留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂背景下的低空无人机检测与跟踪算法

汪建伟 游疆 万敏 顾静良

汪建伟, 游疆, 万敏, 等. 复杂背景下的低空无人机检测与跟踪算法[J]. 强激光与粒子束, 2023, 35: 079001. doi: 10.11884/HPLPB202335.230026
引用本文: 汪建伟, 游疆, 万敏, 等. 复杂背景下的低空无人机检测与跟踪算法[J]. 强激光与粒子束, 2023, 35: 079001. doi: 10.11884/HPLPB202335.230026
Wang Jianwei, You Jiang, Wan Min, et al. Low-altitude UAV detection and tracking algorithms in complex backgrounds[J]. High Power Laser and Particle Beams, 2023, 35: 079001. doi: 10.11884/HPLPB202335.230026
Citation: Wang Jianwei, You Jiang, Wan Min, et al. Low-altitude UAV detection and tracking algorithms in complex backgrounds[J]. High Power Laser and Particle Beams, 2023, 35: 079001. doi: 10.11884/HPLPB202335.230026

复杂背景下的低空无人机检测与跟踪算法

doi: 10.11884/HPLPB202335.230026
详细信息
    作者简介:

    汪建伟,daozhixs@gmail.com

    游 疆,youjiang09@163.com

    通讯作者:

    万 敏, wanmin@caep.cn

    顾静良, 20332079@qq.com

  • 中图分类号: TP391.4

Low-altitude UAV detection and tracking algorithms in complex backgrounds

  • 摘要: 提出一种基于YOLOv5与CSRT算法优化的实时长跟踪方法,实现了对无人机在净空、城市、森林等场景的稳定跟踪。针对跟踪的不同阶段建立不同分辨率的两个捕获网络,分别对两个网络进行小目标检测优化和性能优化,并根据无人机数据集特点对其进行正负样本的添加以实现数据增强。然后,对CSRT算法使用GPU进行优化并结合特征点提取构建了低空无人机检测与跟踪模型。最后,将算法使用Tensorrt部署后在自建数据集上进行实验,实验结果表明,所提方法在RTX 2080Ti上实现了400FPS的跟踪性能,在 NVIDIA Jetson NX上实现了70FPS的性能。在实际外场实验中也实现了稳定的长时间跟踪。
  • 图  1  YOLOv5 结构示意图

    Figure  1.  Schematic diagram of YOLOv5 structure

    图  2  YOLOv5中的两种CSP结构

    Figure  2.  Two CSP structures in YOLOv5

    图  3  CSRT算法的原理框图

    Figure  3.  Block diagram of the CSRT algorithm

    图  4  UavYOLO-B 结构示意图

    Figure  4.  Schematic diagram of UavYOLO-B structure

    图  5  UavYOLO-S 结构示意图

    Figure  5.  Schematic diagram of UavYOLO-S structure

    图  6  图像梯度分块计算示意图

    Figure  6.  Schematic diagram of image gradient block calculation

    图  7  图像金字塔计算示意图

    Figure  7.  Schematic diagram of image pyramid calculation

    图  8  无人机特征点提取示意图

    Figure  8.  Sketch map of UAV feature point extraction

    图  9  结合检测跟踪算法与特征点提取的无人机检测跟踪模型框图

    Figure  9.  Block diagram of UAV detection and tracking model combining detection and tracking algorithm and feature point extraction

    图  10  可视化小目标检测效果

    Figure  10.  Visual detection effects of small targets

    图  11  优化后算法跟踪效果可视化

    Figure  11.  Visualization of algorithm tracking effect after optimization

    表  1  不同检测算法性能对比

    Table  1.   Performance comparison of different detection algorithms

    algorithm size of input image/pixel δAP50/% δAP75/% detection speed/(frames·s−1)
    YOLOv5 1024×1024 86.2 57.8 35
    UavYOLO-B 1024×1024 89.1 59.2 25
    UavYOLO-S 320×320 88.3 58.5 200
    下载: 导出CSV

    表  2  不同检测算法性能对比

    Table  2.   Performance comparison of different detection algorithms

    algorithm capture accuracy/% miss distance/pixel tracking speed/(frames·s−1)
    YOLOv5 87.2 10.6 35
    UavYOLO-B+UavYOLO-S 93.2 5.4 25
    UavYOLO-B+UavYOLO-S+CSRT 97.8 4.8 75
    UavYOLO-B+UavYOLO-S+CSRT+ KeyPoints 97.8 1.5 75
    下载: 导出CSV
  • [1] Klare J, Biallawons O, Cerutti-Maori D. UAV detection with MIMO radar[C]//Proceedings of the 18th International Radar Symposium (IRS). 2017: 1-8.
    [2] Xiao Yue, Zhang Xuejun. Micro-UAV detection and identification based on radio frequency signature[C]//Proceedings of the 6th International Conference on Systems and Informatics (ICSAI). 2019: 1056-1062.
    [3] Kim J, Park C, Ahn J, et al. Real-time UAV sound detection and analysis system[C]//Proceedings of 2017 IEEE Sensors Applications Symposium (SAS). 2017: 1-5.
    [4] Jocher G. v5.0 - YOLOv5-P6 1280 models, AWS, Supervise. ly and YouTube integrations[CP/OL]. [2021-03-12]. https://gitcode.net/mirrors/ultralytics/yolov5/-/releases/v5.0.
    [5] Lukežic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6309-6318.
    [6] Hu Jie, Shen Li, Sun Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
    [7] Han Kai, Wang Yunhe, Tian Qi, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
    [8] van de Weijer J, Schmid C, Verbeek J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523. doi: 10.1109/TIP.2009.2019809
    [9] Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005: 886-893.
    [10] Lowe D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999: 1150-1157.
    [11] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001.
    [12] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 779-788.
    [13] Liu Wei, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. 2016: 21-37.
    [14] Santad T, Silapasupphakornwong P, Choensawat W, et al. Application of YOLO deep learning model for real time abandoned baggage detection[C]//Proceedings of 2018 IEEE 7th Global Conference on Consumer Electronics. 2018: 157-158.
    [15] Dos Reis D H, Welfer D, De Souza Leite Cuadros M A, et al. Mobile robot navigation using an object recognition software with RGBD images and the YOLO algorithm[J]. Applied Artificial Intelligence, 2019, 33(14): 1290-1305. doi: 10.1080/08839514.2019.1684778
    [16] Mei Xue, Ling Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. doi: 10.1109/TPAMI.2011.66
    [17] Wang Naiyan, Wang Jingdong, Yeung D Y. Online robust non-negative dictionary learning for visual tracking[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. 2013: 657-664.
    [18] Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the 14th European Conference on Computer Vision. 2016: 749-765.
    [19] Hare S, Golodetz S, Saffari A, et al. Struck: structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. doi: 10.1109/TPAMI.2015.2509974
    [20] 葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8):1091-1107 doi: 10.11834/jig.170604

    Ge Baoyi, Zuo Xianzhang, Hu Yongjiang. Review of visual object tracking technology[J]. Journal of Image and Graphics, 2018, 23(8): 1091-1107 doi: 10.11834/jig.170604
    [21] Tao Ran, Gavves E, Smeulders A W M. Siamese instance search for tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1420-1429.
    [22] Song Yibing, Ma Chao, Wu Xiaohe, et al. VITAL: visual tracking via adversarial learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 8990-8999.
    [23] MacQueen J B. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967: 281-297.
    [24] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  483
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-04-11
  • 录用日期:  2023-04-04
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回