Preliminary design of reverse permanent magnet guidance system for E-type waveguide oscillator
-
摘要: 开展了E型波导振荡器永磁引导系统的物理与设计研究。对强流相对论电子束在理想方波形反转引导磁场中的传输条件进行了理论分析,给出了相对论条件下轴对称复合场中电子束的傍轴轨迹方程和最小引导磁场的计算公式。根据该理论分析,针对C波段E型波导振荡器高频互作用区的结构特点,设计了反转永磁引导系统,同时给出了漂移管内各个磁场分量的表达式。该系统由轴径向磁化空心永磁体组合产生反转引导磁场,永磁体的总质量约为2.5 kg。采用爆炸发射阴极,展示了强流相对论电子束在该引导磁场中的传输特性。研究结果显示,所设计反转永磁引导系统可引导400 kV、580 A的环形电子束稳定通过半径为6 mm的漂移管,带入器件,得到112.5 MW的4.8 GHz微波输出功率,效率为48.49%,确定了反转永磁引导系统应用于E型波导振荡器的技术可能性。
-
关键词:
- 反转永磁引导磁场 /
- E型波导振荡器 /
- 强流相对论环形电子束 /
- 粒子仿真 /
- 能散度
Abstract: The theoretical analysis and simulation on the permanent magnet guidance system of the E-type waveguide oscillator are developed. Firstly, the theoretical analysis of the modified paraxial ray equation, the minimum magnetic field under relativistic conditions and the transmission conditions of an intense relativistic electron beam in ideal reverse guidance magnetic field are presented. Then the reverse permanent magnet guidance system is designed according to the structure characteristics of the high-frequency interaction zone of the C-band E-type waveguide oscillator, and the expression of each magnetic field component is given. The reverse permanent magnet guidance system produces reverse guidance magnetic field by combining axial and radial magnetized cylindrical permanent magnets, and the total weight of the magnets is about 2.5 kg. The transmission characteristics of the intense relativistic electron beam in the guiding magnetic field are shown. The annular intense relativistic electron beam is produced by an explosive emission cathode. The results show that the designed reverse permanent magnet guidance system can guide the annular electron beam, with voltage of 400 kV, current of 580 A, to pass through the drift tube with a radius of 6mm. In addition, the E-type waveguide oscillator can stably generate 4.8 GHz microwave with power of 112.5 MW and efficiency of 48.49%, and the technical possibility of the reverse permanent magnet guidance system applied to the E-type waveguide oscillator is determined. -
表 1 E型波导振荡器设计参数
Table 1. Design parameters of the E-type waveguide oscillator
beam voltage/
kVbeam current/
Ainner radius of
drifting-tube/mmouter radius of
cathode/mmbeam thickness/
mmminimum magnetic
field/T400 580 6 3 1 0.16 表 2 反转永磁引导系统设计参数
Table 2. Design parameters of the reverse permanent magnet guidance system
No. zmin/mm zmax/mm rmin/mm rmax/mm permanent magnet 1 −184 −146 7 34 permanent magnet 2 −164 −151 7 16 permanent magnet 3 −96 −84 19 38 permanent magnet 4 −95 −90 12 19 permanent magnet 5 −90 −85 12 19 permanent magnet 6 −44 −28 18 38 permanent magnet 7 −41 −36 11 18 permanent magnet 8 −36 −31 11 18 permanent magnet 9 −13 22 30 38 permanent magnet 10 37 53 19 38 permanent magnet 11 40 45 12 19 permanent magnet 12 45 50 12 19 -
[1] 朱丹妮. X波段高阻抗相对论速调管放大器的仿真设计[D]. 长沙: 国防科技大学, 2013: 1-2Zhu Danni. Simulation design of an X-band high-impedance relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2013: 1-2 [2] Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 《高功率微波源与技术》翻译组, 译. 北京: 清华大学出版社, 2005Barker R J, Schamiloglu E. High-power microwave sources and technologies[M]. Translation Group for 《High Power Microwave Sources and Technologies》, trans. Beijing: Tsinghua University Press, 2005 [3] 黄华, 甘延青, 雷禄容, 等. S波段相对论速调管振荡器研究[J]. 物理学报, 2008, 57(3):1765-1770 doi: 10.3321/j.issn:1000-3290.2008.03.076Huang Hua, Gan Yanqing, Lei Lurong, et al. Investigation on an S-band relativistic klystron oscillator[J]. Acta Physica Sinica, 2008, 57(3): 1765-1770 doi: 10.3321/j.issn:1000-3290.2008.03.076 [4] 李士锋, 黄华, 段兆云, 等. Ka波段GW级同轴扩展互作用相对论速调管放大器的仿真研究[C]//2016真空电子学分会第二十届学术年会论文集(上). 2016: 1-5Li Shifeng, Huang Hua, Duan Zhaoyun, et al. Simulation of Ka-band gigawatt coaxial extended interaction relativistic klystron amplifier[C]//20th CVE of Chinese Institute of Electronics. 2016: 1-5 [5] 刘振帮, 黄华, 金晓, 等. X波段高功率高增益多注相对论速调管放大器设计[J]. 强激光与粒子束, 2020, 32:103004 doi: 10.11884/HPLPB202032.200188Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103004 doi: 10.11884/HPLPB202032.200188 [6] Sprehn D, Caryotakis G, Eppley K, et al. PPM focused X-band klystron development at the Stanford Linear Accelerator Center[C]//Pulsed RF Sources for Linear Colliders. 1996: 2-9. [7] 魏元璋, 李士锋, 王战亮, 等. 同轴相对论速调管周期永磁聚焦系统的初步研究[J]. 强激光与粒子束, 2018, 30:063007 doi: 10.11884/HPLPB201830.170468Wei Yuanzhang, Li Shifeng, Wang Zhanliang, et al. Periodic permanent focusing magnet of relativistic klystron[J]. High Power Laser and Particle Beams, 2018, 30: 063007 doi: 10.11884/HPLPB201830.170468 [8] Gilmour Jr A S. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012Gilmour Jr A S. 速调管、行波管、磁控管、正交场放大器和回旋管[M]. 丁耀根, 张兆传, 译. 北京: 国防工业出版社, 2012. (Gilmour Jr A S. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Ding Yaogen, Zhang Zhaochuan, trans. Beijing: National Defense Industry Press, 2012 [9] Malykhin A V, Nevsky P V, Pasmannik V I, et al. High-power multibeam klystron with reversive magnetic focusing system[C]//Proceedings International University Conference 'Electronics and Radiophysics of Ultra-High Frequencies'. 1999: 56-59. [10] Akimov P I, Balabanov A K, Chudin V G, et al. C-band multibeam klystron with reversal focusing system on permanent magnets for electron accelerators[C]//Proceedings of the 10th International Vacuum Electron Sources Conference (IVESC). 2014: 1-2. [11] Komarov D A, Yakushkin E P, Paramonov Y N, et al. Development of a C-band high power amplifier Klystron for linear electron accelerators[C]//Proceedings of the 18th International Vacuum Electronics Conference. 2017: 1-2. [12] 林嘉文. S波段相对论速调管的永磁包装技术研究[D]. 成都: 电子科技大学, 2021: 32-64Lin Jiawen. Research on permanent magnetic packaging technology of S-band relativistic klystron[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 32-64 [13] 电子管设计手册编辑委员会. 微波电子管磁路设计手册[M]. 北京: 国防工业出版社, 1984Electronic Tube Design Handbook Editorial Committee. Microwave electron tube magnetic circuit design handbook[M]. Beijing: National Defense Industry Press, 1984 [14] 丁耀根. 大功率速调管的理论与计算模拟[M]. 北京: 国防工业出版社, 2008Ding Yaogen. Theory and computer simulation of high-power klystron[M]. Beijing: National Defense Industry Press, 2008 [15] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010 [16] 丁耀根. 多注速调管电子光学系统的研究[J]. 电子科学学刊, 2000, 22(3):485-491Ding Yaogen. Study on electron optics system of multi-beam klystron[J]. Journal of Electronics, 2000, 22(3): 485-491 [17] 林秉初, 汪健如. 电子光学[M]. 北京: 清华大学出版社, 2002Lin Bingchu, Wang Jianru. Electron optics[M]. Beijing: Tsinghua University Press, 2002 [18] 顾若男, 李相强, 孔龙, 等. 强流相对论电子束在PPM系统中的传输特性研究[J]. 信息技术, 2017(12):14-17 doi: 10.13274/j.cnki.hdzj.2017.12.004Gu Ruonan, Li Xiangqiang, Kong Long, et al. Analysis of transmission characteristics of the intense relativistic electron beam under PPM focusing system[J]. Information Technology, 2017(12): 14-17 doi: 10.13274/j.cnki.hdzj.2017.12.004