Research and software design of α particle energy spectrum simulation based on Geant4
-
摘要: 为进一步发展基于蒙特卡罗模拟方法的α粒子能谱探测参数优化技术,利用PyQt5设计一款调用蒙特卡罗模拟程序包Geant4进行α粒子能谱模拟研究的软件。一方面,建立了测量α粒子的钝化离子注入平面硅探测器(Passivated Implanted Planar Silicon)物理模型,根据实际α粒子测量条件对模拟的物理过程、模型材料及粒子源几何形状、成分等参数进行校正,结合PyQt5界面开发平台将粒子源参数、探测器参数修改等功能可视化。在多个探源距和不同真空压强条件下进行模拟实验,得到该模型的探测效率,并将获取的能量沉积成谱后,通过EMG-Landau响应函数模型展宽。另一方面,为验证该探测器模型的准确性,将模拟结果与实测结果的探测效率进行对比,实验结果表明,两者探测效率误差均在5%之内,且EMG-Landau响应函数模型展宽效果良好。本文研究结果验证了该Geant4模拟软件在α粒子能谱研究方面的可靠性,该软件可直观修改α粒子能谱测量条件,简化了模拟步骤,提高了模拟效率,为基于蒙特卡罗模拟方法的α粒子能谱探测参数优化技术提供了有力工具。
-
关键词:
- PyQt5 /
- Geant4 /
- 钝化离子注入平面硅探测器 /
- 响应函数 /
- 探测效率
Abstract: To further develop the optimization technology of alpha particle energy spectrum detection parameters based on Monte Carlo simulation method, this paper uses PyQt5 to design a software that calls Monte Carlo simulation package Geant4 for alpha particle energy spectrum simulation research. On the one hand, a physical model of the Passivated Implanted Planar Silicon detector for measuring α particles is established, and the simulated physical process, model materials, particle source geometry, composition and other parameters are corrected according to the actual α particle measurement conditions, combined with the PyQt5 interface. The development platform visualizes functions such as particle source parameters and detector parameter modification. The detection efficiency of the model is obtained by performing simulation experiments under multiple detection distances and different vacuum pressure conditions, and after the acquired energy is deposited into a spectrum, it is broadened by the EMG-Landau (Exponentially Modified Gaussian and Landau) response function model. On the other hand, to verify the accuracy of the detector model, the detection efficiency of the simulation results and the measured results are compared. The experimental results show that the detection efficiency errors of both are within 5%, and the EMG-Landau response function model broadened works well. The research results of this paper verify the reliability of the Geant4 simulation software in the study of α-particle energy spectrum. The software can directly modify the measurement conditions of α-particle energy spectrum, simplify the simulation steps, and improve the simulation efficiency, thus provides a powerful tool for α-particle energy spectrum detection parameter optimization technology.-
Key words:
- PyQt5 /
- Geant4 /
- Passivated Implanted Planar Silicon /
- response function /
- detection efficiency
-
表 1 PIPS探测器腔室部件、尺寸和材料
Table 1. Components, dimensions and materials of PIPS detector chamber
part material density/(g/cm3) inner radius/mm outer radius/mm half height/mm probe top stainless steel 8.06 0 8 3.655 probe stainless steel 8.06 0 13.82 6.175 tray aluminum 2.7 34 25.82 1 sample tray stainless steel 8.06 0 12 0.25 slot stick aluminum 2.7 34 1.15 1 dead layer silicon 2.33 0 13.82 2.5×10−6 silicon layer silicon 2.33 0 13.82 0.175 rubber layer rubber 0.92 0 13.82 0.25 brass layer brass 8.5 0 13.82 0.5 polyethylene layer polyethylene 0.94 0 13.82 2 表 2 238Pu标准源探测效率实测值与Geant4模拟值的对比
Table 2. Comparison between measured value and Geant4 simulation value of detection efficiency of 238Pu standard source
probing distance/mm measured detection efficiency/% analog detection efficiency/% analog detection efficiency range/% relative bias/% 2.8 39.55 38.62 38.42~38.81 2.41 6.8 27.18 27.37 27.04~27.65 0.69 10.8 18.63 18.43 18.35~18.54 1.08 14.8 13.07 13.28 13.25~13.31 1.58 18.8 9.47 9.34 9.27~9.41 1.39 -
[1] 许阳阳, 庹先国, 石睿, 等. PIPS-α谱仪探测效率蒙特卡罗模拟及其影响因素[J]. 强激光与粒子束, 2017, 29(10):155-160 doi: 10.11884/HPLPB201729.170108Xu Yangyang, Tou Xianguo, Shi Rui, et al. Monte Carlo simulation of detection efficiency of PIPS-α spectrometer and its influencing factors[J]. High Power Laser and Particle Beams, 2017, 29(10): 155-160 doi: 10.11884/HPLPB201729.170108 [2] Rui Shi, Xianguo Tuo, Jian Bo Yang, et al. A peak shape model with high-energy tailing for high-resolution alpha-particle spectra[J]. European Physical Journal A, 2019, 55(8): 138-144. [3] 刘江平, 陈强, 王志新, 等. 10 MeV工业辐照电子加速器GEANT4计算和工艺界面软件开发[J]. 辐射研究与辐射工艺学报, 2022, 40(06):62-69Liu Jiangping, Chen Qiang, Wang Zhixin, et al. Computational and process interface software development for 10 MeV industrial irradiation electron accelerator GEANT4[J]. Journal of Radiation Research and Radiation Technology, 2022, 40(06): 62-69 [4] 温小江, 张志远, 周厚兵, 等. 充气反冲核谱仪焦平面探测阵列的GEANT4模拟[J]. 原子核物理评论, 2021, 38(04):423-429Wen Xiaojiang, Zhang Zhiyuan, Zhou Houbing, et al. GEANT4 simulation of the focal plane detection array of gas-filled recoil nuclear spectrometer[J]. Review of Atomic Nuclear Physics, 2021, 38(04): 423-429 [5] Díaz-Francés J A, Cortés-Giraldo M A, Jiménez-Ramos M C, et al. Simulation of the response of a PIPS detector using GEANT4 code[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 875: 21-26. [6] Moslehi A, Baradaran S, Taheri M. GEANT4 modeling of alpha particles detection efficiency for polycarbonate SSNTD[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033: 166714. [7] 宋海声, 庞荣妮, 蔡啸. 基于MC模拟研究锗死层对高纯锗探测效率的影响[J/OL]. 激光与光电子学进展: 1-10[2023-04-20]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230207.1629.068.htmlSong Haisheng, Pang Rongni, Cai Xiao. MC simulation-based study of the effect of germanium dead layer on the detection efficiency of high-purity germanium [J/OL]. Advances in Lasers and Optoelectronics: 1-10 [2023-04-20]. http://kns.cnki.net/kcms/detail/31.1690.tn.20230207.1629.068.html. [8] Wei Tang, Jin-Gang Liang, Yi Ge. et al. A method for neutron-induced gamma spectra decomposition analysis based on Geant4 simulation[J]. Nuclear Science and Techniques, 2022, 33(12): 38-50. [9] Khan A U, DeWerd L A. Evaluation of the GEANT4 transport algorithm and radioactive decay data for alpha particle dosimetry[J]. Applied Radiation and Isotopes, 2021, 176: 109849. doi: 10.1016/j.apradiso.2021.109849 [10] 陈章诺, 郭玉辉, 詹泰鑫, 等. 新型LEAF装置控制软件设计[J]. 核电子学与探测技术, 2020, 40(01):60-64 doi: 10.3969/j.issn.0258-0934.2020.01.012Chen Zhangnuo, Guo Yuhui, Zhan Taixin, et al. Design of control software for a new LEAF device[J]. Nuclear Electronics and Detection Technology, 2020, 40(01): 60-64 doi: 10.3969/j.issn.0258-0934.2020.01.012 [11] 赵志远, 宋昭, 王晓山, 等. 基于PyQt5的地震动参数计算软件设计[J]. 华北地震科学, 2022, 40(4):7-11Zhao Zhiyuan, Song Zhao, Wang Xiaoshan, et al. Design of calculation software for ground motion parameters based on PyQt5[J]. North China Earthquake Science, 2022, 40(4): 7-11 [12] Mendoza E, Cano-Ott D, Romojaro P, et al. Neutron production induced by α-decay with Geant4[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 960: 163659. [13] Incerti S, Gault N, Habchi C, et al. A comparison of cellular irradiation techniques with alpha particles using the Geant4 Monte Carlo simulation toolkit[J]. Radiation Protection Dosimetry, 2006, 122(1-4): 327-329. doi: 10.1093/rpd/ncl422 [14] Pöllänen R. Performance of an in-situ alpha spectrometer[J]. Applied Radiation and Isotopes, 2016, 109: 193-197. doi: 10.1016/j.apradiso.2015.11.110 [15] Shi R, Tuo X, Cheng Y, et al. Applications of non-negative iterative deconvolution method in the analysis of alpha-particle spectra[J]. The European Physical Journal Plus, 2020, 135(2): 225. doi: 10.1140/epjp/s13360-020-00100-9 [16] Tian Feng, Geng Changran, Tang Xiaobin, et al. Proton range monitoring based on picosecond detection using a Cherenkov radiation detector: A Monte Carlo study[J]. Applied Radiation and Isotopes, 2022, 180. [17] Shao Jiang, Zhu Keyong, Liu Xiaochuan, et al. A general Monte Carlo method for polarized radiative transfer in multi-dimensional graded-index media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278. [18] Hao J, Ho T K. Machine learning made easy: a review of Scikit-learn package in python programming language[J]. Journal of Educational and Behavioral Statistics, 2019, 44(3): 348-361. doi: 10.3102/1076998619832248 [19] 张罡, 何小中, 杜洋, 等. 基于Geant4的回旋加速器束流动力学计算[J]. 强激光与粒子束, 2022, 34(07):10-15 doi: 10.11884/HPLPB202234.210458Zhang Gang, He Xiaozhong, Du Yang, et al. Cyclotron beam dynamics calculation based on Geant4[J]. High Power Laser and Particle Beams, 2022, 34(07): 10-15 doi: 10.11884/HPLPB202234.210458 [20] Lee P, Kang N W. Comparison study of MCNP6 and GEANT4 for neutron transportation and detection in 3He Long Counter[J]. Journal of the Physical Society of Japan, 2023, 92(2): 024201. doi: 10.7566/JPSJ.92.024201