Power consumption detection circuit based on pulse width-pulse amplitude hybrid modulation strategy
-
摘要: 线性电源因其干扰小、动态响应速度快等优点被广泛用作半导体激光器驱动电源。针对线性电源中调整管易因功耗过大发生故障的问题,提出了一种脉宽脉幅混合调制方法,利用调整管漏源电压和漏极电流调制生成高频方波,通过平均值电路计算方波平均值,并基于此方法设计了一种调整管功耗检测电路。搭建实验平台对电路进行测试,结果表明,电路检测精度高、硬件成本低、响应速度快,最大检测误差为−2.64%,线性拟合度为0.9987,可广泛用于调整管的功耗检测以及安全区保护。Abstract: Linear power supply is widely used as the driving power of semiconductor laser because of its advantages such as low interference and fast dynamic response. To solve the problem that the regulating tube fails due to excessive power consumption, this paper proposes a hybrid pulse width-pulse amplitude modulation strategy, which uses the drain-source voltage and drain-current of the regulating tube to modulate high frequency square wave, and calculate the mean value of square wave, based on which the regulating tube power consumption detection circuit is designed. An experimental platform is built to test the circuit, and the results show that the circuit has the advantages of excellent detection accuracy, low hardware cost and fast response. The circuit has a maximum relative error of
$- 2.64{\text{%}} $ and a linearity fit of$ 0.9987 $ . It can be widely used for power consumption measurement and safety zone protection of regulating tube. -
表 1 不同频率下功耗检测误差分析
Table 1. Error analysis of power consumption detection at different frequencies
frequency
${f_{\mathrm{s}}}$/kHzmaximum relative
error ${\delta _{\max }}$/%mean square
error (MSE)linear fit
${R^2}$75 −2.78 0.314 0.9965 100 −2.64 0.237 0.9987 125 −3.04 0.403 0.9788 150 −3.26 0.491 0.9617 175 −4.43 0.515 0.9478 表 2 采样频率为100 kHz时对应的实验数据
Table 2. Experimental data corresponding to a sampling frequency of 100 kHz
drain current $ \text{ }{i}_{{\mathrm{d}}} $/A drain source voltage $ \text{ }{v}_{{\mathrm{ds}}} $/V true value ${P_{\mathrm{r}}}$/W analog output ${V_{\mathrm{a}}}$/V detected value P/W relative error $\delta $/% 1 18.98 18.98 0.298 18.48 −2.64 2 14.96 29.92 0.476 29.44 −1.60 3 12.28 36.84 0.598 37.02 0.48 4 11.02 44.08 0.717 44.41 0.76 5 9.84 49.20 0.804 49.78 1.19 6 9.02 54.12 0.885 54.77 1.20 7 8.26 57.82 0.939 58.11 0.50 8 7.62 60.96 0.987 61.13 0.28 9 7.10 63.90 1.027 63.58 −0.50 10 6.54 65.40 1.043 64.57 −1.27 11 6.16 67.76 1.091 67.52 −0.35 12 5.68 68.16 1.084 67.11 −1.54 13 5.18 67.34 1.078 66.77 −0.85 14 4.72 66.08 1.069 66.18 0.15 15 4.36 65.40 1.070 66.22 1.26 16 4.06 64.96 1.045 64.67 −0.44 17 3.64 61.88 0.997 61.70 −0.29 18 3.26 58.68 0.943 58.36 −0.55 19 2.84 53.96 0.869 53.81 −0.28 20 2.34 46.80 0.753 46.59 −0.44 -
[1] 余俊宏, 郭林辉, 王昭, 等. 200 W级高亮度半导体激光器光纤耦合模块[J]. 强激光与粒子束, 2014, 26:111001 doi: 10.3788/HPLPB20142611.111001Yu Junhong, Guo Linhui, Wang Zhao, et al. High brightness fiber coupled diode laser module with 200 W class output power[J]. High Power Laser and Particle Beams, 2014, 26: 111001 doi: 10.3788/HPLPB20142611.111001 [2] 沈晓红, 曾盈莹, 毛琳, 等. 双波长自锁模半导体薄片激光器[J]. 物理学报, 2022, 71:204202 doi: 10.7498/aps.71.20220483Shen Xiaohong, Zeng Yingying, Mao Lin, et al. Dual-wavelength self-mode-locked semiconductor disk laser[J]. Acta Physica Sinica, 2022, 71: 204202 doi: 10.7498/aps.71.20220483 [3] 田亚玲, 李创社, 张朝阳. 高精度和高稳定性半导体激光器恒流驱动电源[J]. 西安交通大学学报, 2019, 53(3):1-5Tian Yaling, Li Chuangshe, Zhang Zhaoyang. High-accuracy and high-stability constant current power for semiconductor lasers[J]. Journal of Xi'an Jiaotong University, 2019, 53(3): 1-5 [4] 张龙, 陈建生, 高静, 等. 大功率半导体激光器驱动电源及温控系统设计[J]. 红外与激光工程, 2018, 47:1005003 doi: 10.3788/IRLA201847.1005003Zhang Long, Chen Jiansheng, Gao Jing, et al. Design of driving power and temperature control system for high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47: 1005003 doi: 10.3788/IRLA201847.1005003 [5] Zhu Xueli, Zhang Donglai, Gao Wei. Online noninvasive technique for condition monitoring of capacitor in linear power supplies[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8761-8773. doi: 10.1109/TPEL.2021.3057593 [6] 熊刚, 王伟平. 一种开关线性复合电源及控制策略[J]. 电子测试, 2021(19):18-20,17Xiong Gang, Wang Weiping. A switch linearity hybrid power supply and its control strategy[J]. Electronic Test, 2021(19): 18-20,17 [7] Ebadi M, Abbasi N, Maghsoudi H. A fast and cost-effective short circuit protection scheme for low-power converters for small-scale photovoltaic application[J]. Circuit World, 2022, 48(3): 366-376. doi: 10.1108/CW-11-2021-0281 [8] 许迪迪, 张小玲, 齐浩淳, 等. 功率MOSFET器件安全工作区的研究[J]. 电力电子技术, 2018, 52(8):70-72Xu Didi, Zhang Xiaoling, Qi Haochun, et al. Research on safe operating area of power MOSFET devices[J]. Power Electronics, 2018, 52(8): 70-72 [9] 饶俊峰, 曾彤, 李孜, 等. 固态Marx发生器的过流保护研究[J]. 强激光与粒子束, 2019, 31:125001 doi: 10.11884/HPLPB201931.190138Rao Junfeng, Zeng Tong, Li Zi, et al. Study on over-current protection of solid-state Marx generators[J]. High Power Laser and Particle Beams, 2019, 31: 125001 doi: 10.11884/HPLPB201931.190138 [10] 刘平, 刘叶春, 苗轶如. 基于瞬时功耗检测的SiC MOSFET短路保护策略[J]. 固体电子学研究与进展, 2022, 42(4):263-268,280Liu Ping, Liu Yechun, Miao Yiru. Short circuit protection strategy of SiC MOSFET based on instantaneous power detection[J]. Research & Progress of SSE, 2022, 42(4): 263-268,280 [11] 李杰, 陈庆奎. 基于蓝牙4.0的GPU集群功耗测量系统设计[J]. 电子检测与仪器学报, 2014, 28(3):314-319Li Jie, Chen Qingkui. Design of GPU cluster power consumption measurement system based on Bluetooth 4.0[J]. Journal of Electronic Measurement and Instrumentation, 2014, 28(3): 314-319 [12] 文阳. SiC MOSFET模块驱动保护电路研究[D]. 西安: 西安理工大学, 2020: 69-79Wen Yang. Study on SiC MOSFET module drive and protection circuit[D]. Xi’an: Xi’an University of Technology, 2020: 69-79 [13] 刘增水, 陈瑜迪. 二阶低通滤波器仿真分析及其应用[J]. 电子设计工程, 2019, 27(16):180-184Liu Zengshui, Chen Yudi. Simulation analysis and application of second-order low-pass filter[J]. Electronic Design Engineering, 2019, 27(16): 180-184