留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于OpenMC的反应性等效物理转换方法在双重非均匀性问题中的应用

刘鹏飞 陈玉清 李颂 朱彤

刘鹏飞, 陈玉清, 李颂, 等. 基于OpenMC的反应性等效物理转换方法在双重非均匀性问题中的应用[J]. 强激光与粒子束, 2023, 35: 126002. doi: 10.11884/HPLPB202335.230193
引用本文: 刘鹏飞, 陈玉清, 李颂, 等. 基于OpenMC的反应性等效物理转换方法在双重非均匀性问题中的应用[J]. 强激光与粒子束, 2023, 35: 126002. doi: 10.11884/HPLPB202335.230193
Liu Pengfei, Chen Yuqing, Li Song, et al. Application development of RPT module based on OpenMC for double-heterogeneous system[J]. High Power Laser and Particle Beams, 2023, 35: 126002. doi: 10.11884/HPLPB202335.230193
Citation: Liu Pengfei, Chen Yuqing, Li Song, et al. Application development of RPT module based on OpenMC for double-heterogeneous system[J]. High Power Laser and Particle Beams, 2023, 35: 126002. doi: 10.11884/HPLPB202335.230193

基于OpenMC的反应性等效物理转换方法在双重非均匀性问题中的应用

doi: 10.11884/HPLPB202335.230193
详细信息
    作者简介:

    刘鹏飞,m21182703@nue.edu.cn

    通讯作者:

    陈玉清,chenyuqing301@163.com

  • 中图分类号: TL334

Application development of RPT module based on OpenMC for double-heterogeneous system

  • 摘要: 由于基体中有着大量随机分布的弥散颗粒,双重非均匀系统具有复杂的几何结构,传统中子学计算方法往往难以处理双重非均匀系统,反应性等效物理转换(RPT)方法是常用的近似处理方法。通过分析RPT方法的三个关键步骤:精确初始值的求解、等效半径的求解、燃耗算法的选取,探讨了各步骤采用不同算法对RPT方法效率和精度的影响,并基于OpenMC在Python应用程序接口之上开发了RPT模块。数值结果表明,优化后的RPT模块,在保持良好计算效率的同时,也能满足工程计算精度的需要。
  • 图  1  反应性等效物理转换方法示意图

    Figure  1.  Schematic diagram of reactivity equivalent physical transformation method

    图  2  弥散颗粒系统晶格划分示意图

    Figure  2.  Diagram of lattice division of dispersed particle system

    图  3  基于OpenMC的RPT模块流程图

    Figure  3.  Flow chart of RPT module based on OpenMC

    图  4  晶格划分对计算效率的影响

    Figure  4.  Effect of lattice division on computational efficiency

    图  5  采用传统方法与RPT模块搜索等效半径效果对比图

    Figure  5.  Comparison of the effect of searching equivalent radius between traditional method and RPT module

    图  6  RPT模块处理双重非均匀系统时Kinf及反应性偏差随燃耗的变化

    Figure  6.  Variation of Kinf and reactivity deviation with depletion using RPT module to deal with DH system

    表  1  棒状几何燃料栅元主要参数

    Table  1.   Main parameters of fuel pin

    pitch/cm radius
    of fuel
    region/cm
    thickness
    of air
    gas/cm
    material
    of
    matrix
    matrix
    enrichment
    ratio/%
    density of
    matrix/
    (g·cm−3)
    material
    of
    cladding/cm
    thickness of
    zirconium
    cladding/cm
    density of
    zirconium cladding/
    (g·cm−3)
    density of
    moderate H2O/
    (g·cm−3)
    temperature/K
    1.26 0.4096 0.0084 UO2 20 10.5 Zr 0.057 6.5 1.0 300
    下载: 导出CSV

    表  2  随机弥散毒物颗粒模型参数

    Table  2.   Parameters of dispersed poison particles

    material of particlesradius of particles/μmvolumetric fraction of particles/%density of fuel particles/(g·cm−3)
    B4C100/21551.9
    Er2O3100/21558.6
    下载: 导出CSV

    表  3  不同晶格划分方法对弥散颗粒系统计算的影响

    Table  3.   Effects of different lattice partition methods on the calculation of dispersed particle system

    lattice division
    method
    computing time/s Kinf
    volumetric fraction 5% volumetric fraction 10% volumetric fraction 5% volumetric fraction 10%
    1×1×1(no lattice) 5868.359 17236.021 1.45644 1.61679
    3×3×3 732.663 1639.056 1.45538 1.61731
    5×5×5 376.934 769.323 1.45602 1.61757
    7×7×7 270.646 503.730 1.45558 1.61638
    10×10×10 177.279 262.550 1.45651 1.61755
    13×13×13 174.607 247.808 1.45698 1.61752
    15×15×15 177.633 246.969 1.45634 1.61741
    17×17×17 182.233 254.476 1.45673 1.61613
    19×19×19 200.549 260.858 1.45546 1.61734
    21×21×21 206.945 271.748 1.45615 1.61748
    下载: 导出CSV

    表  4  OpenMC生成颗粒时间

    Table  4.   Particle generation time of OpenMC

    volumetric
    fraction/%
    particle
    number
    consumption
    time/s
    5 5033 0.67583202
    10 10066 1.49383474
    20 20132 3.50719374
    30 30198 17.73238749
    40 40265 156.2571
    下载: 导出CSV
  • [1] 娄磊, 柴晓明, 姚栋, 等. 弥散颗粒系统双重非均匀性物理边界研究[J]. 核动力工程, 2021, 42(s2):82-88 doi: 10.13832/j.jnpe.2021.S2.0082

    Lou Lei, Chai Xiaoming, Yao Dong, et al. Research of double-heterogeneity physical boundary on dispersed particle-type systems[J]. Nuclear Power Engineering, 2021, 42(s2): 82-88 doi: 10.13832/j.jnpe.2021.S2.0082
    [2] Brown F B, Martin W R. Stochastic geometry capability in MCNP5 for the analysis of particle fuel[J]. Annals of Nuclear Energy, 2004, 31(17): 2039-2047. doi: 10.1016/j.anucene.2004.08.006
    [3] 刘仕倡, 王 侃, 陈义学. 改进弦长抽样方法开发及在弥散燃料蒙特卡罗模拟的应用[J]. 原子能科学技术, 2020(9):54

    Liu Shichang, Wang Kan, Chen Yixue. Development of Improved chord-length sampling method and its application in Monte Carlo simulation of dispersion fuel[J]. Atomic Energy Science and Technology, 2020(9): 54
    [4] Murata I, Takahashi A, Mori T, et al. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors[J]. Journal of Nuclear Science and Technology, 1997, 34(8): 734-744. doi: 10.1080/18811248.1997.9733737
    [5] Ji Wei, Martin W R. Monte Carlo simulation of VHTR particle fuel with chord length sampling[C]//Proceedings of 2007 Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. 2007: 42104-48109.
    [6] Liang C. Radiation transport computation in stochastic media: method and application[D]. Troy: Rensselaer Polytechnic Institute, 2014.
    [7] She Ding, Liu Zhihong, Shi Lei. An equivalent homogenization method for treating the stochastic media[J]. Nuclear Science and Engineering, 2017, 185(2): 351-360. doi: 10.1080/00295639.2016.1272363
    [8] Hebért A. A collision probability analysis of the Double-Heterogeneity problem[J]. Nuclear Science and Engineering, 1993, 115(2): 177-184. doi: 10.13182/NSE115-177
    [9] Sanchez R, Pomraning G C. A statistical analysis of the double heterogeneity problem[J]. Annals of Nuclear Energy, 1991, 18(7): 371-395. doi: 10.1016/0306-4549(91)90073-7
    [10] 朱彤, 陈玉清, 李昂, 等. 基于SuperMC的随机介质程序在双重非均匀性问题中的应用[J]. 强激光与粒子束, 2022, 34:026013 doi: 10.11884/HPLPB202234.210301

    Zhu Tong, Chen Yuqing, Li Ang, et al. Application of random media program based on SuperMC in solving double-heterogeneity[J]. High Power Laser and Particle Beams, 2022, 34: 026013 doi: 10.11884/HPLPB202234.210301
    [11] Kim Y, Kim K S, Noh J M. Reactivity-equivalent physical transformation for homogenization of double-heterogeneous fuels[C]//Transactions of the Korean Nuclear Society Autumn Meeting. 2005.
    [12] Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [13] Li Jian, She Ding, Shi Lei. An improved reactivity-equivalent physical transformation for treating FCM fuel with burnable poisons[J]. Annals of Nuclear Energy, 2018, 121: 577-581. doi: 10.1016/j.anucene.2018.08.024
    [14] Lou Lei, Peng Xingjie, Chai Xiaoming, et al. The ring RPT method for DH systems containing dispersed particle-type of fuel and burnable poisons[J]. Frontiers in Energy Research, 2021, 9: 704307. doi: 10.3389/fenrg.2021.704307
    [15] Lou Lei, Yao Dong, Chai Xiaoming, et al. A novel reactivity-equivalent physical transformation method for homogenization of double-heterogeneous systems[J]. Annals of Nuclear Energy, 2020, 142: 107396. doi: 10.1016/j.anucene.2020.107396
    [16] Lou Lei, Chai Xiaoming, Yao Dong, et al. Research of ring RPT method on spherical and cylindrical Double-Heterogeneous systems[J]. Annals of Nuclear Energy, 2020, 147: 107741. doi: 10.1016/j.anucene.2020.107741
    [17] Torquato S, Uche O U, Stillinger F H. Random sequential addition of hard spheres in high Euclidean dimensions[J]. Physical Review E, 2006, 74: 061308. doi: 10.1103/PhysRevE.74.061308
    [18] Yu Jiankai, Forget B. Verification of depletion capability of OpenMC using VERA depletion benchmark[J]. Annals of Nuclear Energy, 2022, 170: 108973. doi: 10.1016/j.anucene.2022.108973
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  170
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-10-30
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-11-09
  • 刊出日期:  2023-12-15

目录

    /

    返回文章
    返回