Application development of RPT module based on OpenMC for double-heterogeneous system
-
摘要: 由于基体中有着大量随机分布的弥散颗粒,双重非均匀系统具有复杂的几何结构,传统中子学计算方法往往难以处理双重非均匀系统,反应性等效物理转换(RPT)方法是常用的近似处理方法。通过分析RPT方法的三个关键步骤:精确初始值的求解、等效半径的求解、燃耗算法的选取,探讨了各步骤采用不同算法对RPT方法效率和精度的影响,并基于OpenMC在Python应用程序接口之上开发了RPT模块。数值结果表明,优化后的RPT模块,在保持良好计算效率的同时,也能满足工程计算精度的需要。
-
关键词:
- OpenMC /
- 双重非均匀系统 /
- 弥散颗粒燃料 /
- 反应性等效物理转换方法
Abstract: Due to the large number of randomly distributed dispersed particles in the matrix, the double heterogeneous (DH) system has a complex geometric structure, and it is often difficult to deal with the DH system using the traditional neutronics calculation method. The reactivity equivalent physical transformation (RPT) method is a commonly used approximation method. This paper analyzes the three key steps of the RPT method: the solution of the exact initial value, the solution of the equivalent radius, and the selection of the depletion algorithm. The influence of different algorithms on the efficiency and accuracy of the RPT method is discussed. Based on OpenMC, an RPT module is developed on the Python API. The numerical results show that the optimized RPT module can meet the needs of engineering calculation accuracy while maintaining good calculation efficiency. -
表 1 棒状几何燃料栅元主要参数
Table 1. Main parameters of fuel pin
pitch/cm radius
of fuel
region/cmthickness
of air
gas/cmmaterial
of
matrixmatrix
enrichment
ratio/%density of
matrix/
(g·cm−3)material
of
cladding/cmthickness of
zirconium
cladding/cmdensity of
zirconium cladding/
(g·cm−3)density of
moderate H2O/
(g·cm−3)temperature/K 1.26 0.4096 0.0084 UO2 20 10.5 Zr 0.057 6.5 1.0 300 表 2 随机弥散毒物颗粒模型参数
Table 2. Parameters of dispersed poison particles
material of particles radius of particles/μm volumetric fraction of particles/% density of fuel particles/(g·cm−3) B4C 100/215 5 1.9 Er2O3 100/215 5 8.6 表 3 不同晶格划分方法对弥散颗粒系统计算的影响
Table 3. Effects of different lattice partition methods on the calculation of dispersed particle system
lattice division
methodcomputing time/s Kinf volumetric fraction 5% volumetric fraction 10% volumetric fraction 5% volumetric fraction 10% 1×1×1(no lattice) 5868.359 17236.021 1.45644 1.61679 3×3×3 732.663 1639.056 1.45538 1.61731 5×5×5 376.934 769.323 1.45602 1.61757 7×7×7 270.646 503.730 1.45558 1.61638 10×10×10 177.279 262.550 1.45651 1.61755 13×13×13 174.607 247.808 1.45698 1.61752 15×15×15 177.633 246.969 1.45634 1.61741 17×17×17 182.233 254.476 1.45673 1.61613 19×19×19 200.549 260.858 1.45546 1.61734 21×21×21 206.945 271.748 1.45615 1.61748 表 4 OpenMC生成颗粒时间
Table 4. Particle generation time of OpenMC
volumetric
fraction/%particle
numberconsumption
time/s5 5033 0.67583202 10 10066 1.49383474 20 20132 3.50719374 30 30198 17.73238749 40 40265 156.2571 -
[1] 娄磊, 柴晓明, 姚栋, 等. 弥散颗粒系统双重非均匀性物理边界研究[J]. 核动力工程, 2021, 42(s2):82-88 doi: 10.13832/j.jnpe.2021.S2.0082Lou Lei, Chai Xiaoming, Yao Dong, et al. Research of double-heterogeneity physical boundary on dispersed particle-type systems[J]. Nuclear Power Engineering, 2021, 42(s2): 82-88 doi: 10.13832/j.jnpe.2021.S2.0082 [2] Brown F B, Martin W R. Stochastic geometry capability in MCNP5 for the analysis of particle fuel[J]. Annals of Nuclear Energy, 2004, 31(17): 2039-2047. doi: 10.1016/j.anucene.2004.08.006 [3] 刘仕倡, 王 侃, 陈义学. 改进弦长抽样方法开发及在弥散燃料蒙特卡罗模拟的应用[J]. 原子能科学技术, 2020(9):54Liu Shichang, Wang Kan, Chen Yixue. Development of Improved chord-length sampling method and its application in Monte Carlo simulation of dispersion fuel[J]. Atomic Energy Science and Technology, 2020(9): 54 [4] Murata I, Takahashi A, Mori T, et al. New sampling method in continuous energy Monte Carlo calculation for pebble bed reactors[J]. Journal of Nuclear Science and Technology, 1997, 34(8): 734-744. doi: 10.1080/18811248.1997.9733737 [5] Ji Wei, Martin W R. Monte Carlo simulation of VHTR particle fuel with chord length sampling[C]//Proceedings of 2007 Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications. 2007: 42104-48109. [6] Liang C. Radiation transport computation in stochastic media: method and application[D]. Troy: Rensselaer Polytechnic Institute, 2014. [7] She Ding, Liu Zhihong, Shi Lei. An equivalent homogenization method for treating the stochastic media[J]. Nuclear Science and Engineering, 2017, 185(2): 351-360. doi: 10.1080/00295639.2016.1272363 [8] Hebért A. A collision probability analysis of the Double-Heterogeneity problem[J]. Nuclear Science and Engineering, 1993, 115(2): 177-184. doi: 10.13182/NSE115-177 [9] Sanchez R, Pomraning G C. A statistical analysis of the double heterogeneity problem[J]. Annals of Nuclear Energy, 1991, 18(7): 371-395. doi: 10.1016/0306-4549(91)90073-7 [10] 朱彤, 陈玉清, 李昂, 等. 基于SuperMC的随机介质程序在双重非均匀性问题中的应用[J]. 强激光与粒子束, 2022, 34:026013 doi: 10.11884/HPLPB202234.210301Zhu Tong, Chen Yuqing, Li Ang, et al. Application of random media program based on SuperMC in solving double-heterogeneity[J]. High Power Laser and Particle Beams, 2022, 34: 026013 doi: 10.11884/HPLPB202234.210301 [11] Kim Y, Kim K S, Noh J M. Reactivity-equivalent physical transformation for homogenization of double-heterogeneous fuels[C]//Transactions of the Korean Nuclear Society Autumn Meeting. 2005. [12] Romano P K, Horelik N E, Herman B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [13] Li Jian, She Ding, Shi Lei. An improved reactivity-equivalent physical transformation for treating FCM fuel with burnable poisons[J]. Annals of Nuclear Energy, 2018, 121: 577-581. doi: 10.1016/j.anucene.2018.08.024 [14] Lou Lei, Peng Xingjie, Chai Xiaoming, et al. The ring RPT method for DH systems containing dispersed particle-type of fuel and burnable poisons[J]. Frontiers in Energy Research, 2021, 9: 704307. doi: 10.3389/fenrg.2021.704307 [15] Lou Lei, Yao Dong, Chai Xiaoming, et al. A novel reactivity-equivalent physical transformation method for homogenization of double-heterogeneous systems[J]. Annals of Nuclear Energy, 2020, 142: 107396. doi: 10.1016/j.anucene.2020.107396 [16] Lou Lei, Chai Xiaoming, Yao Dong, et al. Research of ring RPT method on spherical and cylindrical Double-Heterogeneous systems[J]. Annals of Nuclear Energy, 2020, 147: 107741. doi: 10.1016/j.anucene.2020.107741 [17] Torquato S, Uche O U, Stillinger F H. Random sequential addition of hard spheres in high Euclidean dimensions[J]. Physical Review E, 2006, 74: 061308. doi: 10.1103/PhysRevE.74.061308 [18] Yu Jiankai, Forget B. Verification of depletion capability of OpenMC using VERA depletion benchmark[J]. Annals of Nuclear Energy, 2022, 170: 108973. doi: 10.1016/j.anucene.2022.108973