Equivalent testing method for shielding effectiveness of miniature unmanned aerial vehicle
-
摘要: 微小型无人飞行器的屏蔽效能对其抗外部强电磁干扰能力有显著影响。针对微小型飞行器物理空间小、屏蔽效能难以测量的困难,提出一种基于扩比模型的等效获取方法,将原模型等比例扩大n倍得到扩比模型,利用常规屏蔽效能测试方法和测试仪器测量得到扩比模型的屏蔽效能,再根据扩比模型和原模型屏蔽效能的关系得到原模型的屏蔽效能。以巡飞弹和四旋翼无人机两种典型微小型飞行器为例进行了仿真,结果表明原模型在频率f处的屏蔽效能等于扩比模型在频率f1=f/n处的屏蔽效能,验证了该方法的正确性。在此基础上,总结提出了基于扩比模型的等效测试流程,为微小型飞行器屏蔽效能的测试提供了一种可行的测试方法。Abstract: The shielding effectiveness of a miniature unmanned aerial vehicle (UAV) has a significant impact on its ability to resist strong external electromagnetic interference. An equivalent method based on a large-scale model is employed to overcome the difficulties of measurement performed inside an extremely small space. In this method, the original miniature UAV is enlarged in proportion with scaling factor n and then a large-scale model is obtained. The shielding effectiveness of the large-scale model can be measured by existing mature instruments and test method. Then, the shielding effectiveness of the original model is obtained according to the relationship between the two models. On this basis, two typical miniature UAVs, i.e., a loitering munition and a quad-rotor UAV, are modeled and simulated. It is validated that the shielding effectiveness of the original model at the frequency f is equal to that of the large-scale model at the frequency
$ {f_1} = f/n $ . Thus, the proposed equivalent method is correct and effective. Finally, a testing procedure is outlined for the equivalent method. It provides an available way to obtain shielding effectiveness of miniature UAVs. -
表 1 原模型与扩比模型各参量之间的对应关系
Table 1. Relations of the parameters between the original model and its large-scale model
parameter original model large-scale model length l $ {l_1} = nl $ frequency f $ {f_1} = f/n $ dielectric constant $ \varepsilon $ $ {\varepsilon _1} = \varepsilon $ permeability $ \; \mu $ $ \;{ \mu _1} = \mu $ conductivity $ \sigma $ $ {\sigma _1} = \sigma /n $ -
[1] 陈黎. 从纳卡冲突看无人机/反无人机作战的未来发展[J]. 国防科技工业, 2021(1):54-57Chen Li. Future development of UAV/Anti UAV operations from the perspective of Nagorno-Karabakh conflict[J]. Defense Science & Technology Industry, 2021(1): 54-57 [2] 陈浩天, 聂玉宝, 郭海龙. 纳卡冲突中无人机攻防及其启示[J]. 航天电子对抗, 2020, 36(6):61-64Chen Haotian, Nie Yubao, Guo Hailong. Revelations of attack and defense of UAV in Nagorno-Karabakh conflict[J]. Aerospace Electronic Warfare, 2020, 36(6): 61-64 [3] 杨佳会, 朱超磊, 许佳. 俄乌冲突中的无人机运用[J]. 战术导弹技术, 2022(3):116-123Yang Jiahui, Zhu Chaolei, Xu Jia. Analysis of UAV deployment in Russia-Ukraine conflict[J]. Tactical Missile Technology, 2022(3): 116-123 [4] Khurshudyan I, Ilyushina M, Khudov K. Russia and Ukraine are fighting the first full-scale drone war[EB/OL]. (2022-12-02). https://www.washingtonpost.com/world/2022/12/02/drones-russia-ukraine-air-war/. [5] 李立嘉, 沙长涛. 小屏蔽体屏蔽效能的测量方法[J]. 安全与电磁兼容, 2017(2):86-88Li Lijia, Sha Changtao. Test methods for shielding effectiveness of small-sized shielding enclosure[J]. Safety & EMC, 2017(2): 86-88 [6] 黄刘宏, 杨吉祥, 陈晋央, 等. 电磁屏蔽室屏蔽等级和测量方法研究[J]. 电子科技, 2014, 27(10):171-174Huang Liuhong, Yang Jixiang, Chen Jinyang, et al. Study on shielding effectiveness and measurement methods for electromagnetic shielded enclosure[J]. Electronic Science and Technology, 2014, 27(10): 171-174 [7] IEEE 299-2006, Standard method for measuring the effectiveness of electromagnetic shielding enclosures[S]. [8] GB/T 12190-2021, 电磁屏蔽室屏蔽效能的测量方法[S]GB/T 12190-2021, Method for measuring the shielding effectiveness of electromagnetic shielding enclosures[S] [9] GJB 5792-2006, 军用涉密信息系统电磁屏蔽体等级划分和测量方法[S]GJB 5792-2006, Classification and measurement methods for shielded enclosures of military security information systems[S] [10] IEEE 299.1-2013, Standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m[S]. [11] GB/T 39278-2020, 0.1m~2m屏蔽壳体屏蔽效能的测量方法[S]GB/T 39278-2020, Method for measuring the shielding effectiveness of shielding enclosures having all dimensions between 0.1 m and 2 m[S] [12] Jin Zusheng, Li Jianxuan, Shi Jialin, et al. An equivalent method for measuring shielding effectiveness of a microminiature electromagnetic shield using its large-scale model[C]//2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. 2022: 361-365. [13] 丁雪. 电磁兼容缩尺比测试方法介绍[J]. 电子质量, 2007(3):4-5Ding Xue. Introduction of reduced-scale model for EMC test[J]. Electronics Quality, 2007(3): 4-5 [14] Law P E Jr. Shipboard electromagnetics[M]. Boston: Artech House, 1987. [15] 汤仕平, 陈黎平, 万海军, 等. 电磁兼容性船模预测在电波暗室内的实现[J]. 中国造船, 2006, 47(2):42-49 doi: 10.3969/j.issn.1000-4882.2006.02.006Tang Shiping, Chen Liping, Wan Haijun, et al. Realization of electromagnetic compatibility ship model prediction in anechoic chamber[J]. Shipbuilding of China, 2006, 47(2): 42-49 doi: 10.3969/j.issn.1000-4882.2006.02.006