留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小型无人飞行器电磁屏蔽效能等效测试方法

金祖升 李建轩 施佳林 张勇 李国林

金祖升, 李建轩, 施佳林, 等. 微小型无人飞行器电磁屏蔽效能等效测试方法[J]. 强激光与粒子束, 2024, 36: 043003. doi: 10.11884/HPLPB202436.230261
引用本文: 金祖升, 李建轩, 施佳林, 等. 微小型无人飞行器电磁屏蔽效能等效测试方法[J]. 强激光与粒子束, 2024, 36: 043003. doi: 10.11884/HPLPB202436.230261
Jin Zusheng, Li Jianxuan, Shi Jialin, et al. Equivalent testing method for shielding effectiveness of miniature unmanned aerial vehicle[J]. High Power Laser and Particle Beams, 2024, 36: 043003. doi: 10.11884/HPLPB202436.230261
Citation: Jin Zusheng, Li Jianxuan, Shi Jialin, et al. Equivalent testing method for shielding effectiveness of miniature unmanned aerial vehicle[J]. High Power Laser and Particle Beams, 2024, 36: 043003. doi: 10.11884/HPLPB202436.230261

微小型无人飞行器电磁屏蔽效能等效测试方法

doi: 10.11884/HPLPB202436.230261
基金项目: 湖南省自然科学基金项目(2020JJ4017)
详细信息
    作者简介:

    金祖升,jin_hexi@126.com

  • 中图分类号: TN98

Equivalent testing method for shielding effectiveness of miniature unmanned aerial vehicle

  • 摘要: 微小型无人飞行器的屏蔽效能对其抗外部强电磁干扰能力有显著影响。针对微小型飞行器物理空间小、屏蔽效能难以测量的困难,提出一种基于扩比模型的等效获取方法,将原模型等比例扩大n倍得到扩比模型,利用常规屏蔽效能测试方法和测试仪器测量得到扩比模型的屏蔽效能,再根据扩比模型和原模型屏蔽效能的关系得到原模型的屏蔽效能。以巡飞弹和四旋翼无人机两种典型微小型飞行器为例进行了仿真,结果表明原模型在频率f处的屏蔽效能等于扩比模型在频率f1=f/n处的屏蔽效能,验证了该方法的正确性。在此基础上,总结提出了基于扩比模型的等效测试流程,为微小型飞行器屏蔽效能的测试提供了一种可行的测试方法。
  • 图  1  简化弹簧刀300型巡飞弹的屏蔽效能仿真模型

    Figure  1.  Simulation model for shielding effectiveness of simplified Switchblade 300 loitering munition

    图  2  四旋翼无人机屏蔽效能仿真模型

    Figure  2.  Simulation model for shielding effectiveness of the quad-rotor UAV

    图  3  巡飞弹原模型和扩比模型屏蔽效能计算结果

    Figure  3.  Computed shielding effectiveness of the original model and large-scale model of the loitering munition

    图  4  四旋翼无人机原模型和扩比模型屏蔽效能计算结果

    Figure  4.  Computed shielding effectiveness of the original model and large-scale model of the quad-rotor UAV

    图  5  巡飞弹扩比模型(介质材质)不同电导率参数下的屏蔽效能结果

    Figure  5.  Shielding effectiveness of the large-scale model of the loitering munition with different $ {\sigma _1} $

    图  6  四旋翼无人机扩比模型(介质材质)不同电导率参数下的屏蔽效能结果

    Figure  6.  Shielding effectiveness of the large-scale model of the quad-rotor UAV with different $ {\sigma _1} $

    图  7  微小型无人飞行器n倍等比扩大示意图

    Figure  7.  Miniature UAV and its large-scale model

    图  8  基于扩比模型的屏蔽效能等效测试系统组成图

    Figure  8.  System composition of equivalent testing method for shielding effectiveness

    图  9  基于扩比模型的屏蔽效能等效测试方法

    Figure  9.  Equivalent testing method for shielding effectiveness based on a large-scale model

    表  1  原模型与扩比模型各参量之间的对应关系

    Table  1.   Relations of the parameters between the original model and its large-scale model

    parameter original model large-scale model
    length l $ {l_1} = nl $
    frequency f $ {f_1} = f/n $
    dielectric constant $ \varepsilon $ $ {\varepsilon _1} = \varepsilon $
    permeability $ \; \mu $ $ \;{ \mu _1} = \mu $
    conductivity $ \sigma $ $ {\sigma _1} = \sigma /n $
    下载: 导出CSV
  • [1] 陈黎. 从纳卡冲突看无人机/反无人机作战的未来发展[J]. 国防科技工业, 2021(1):54-57

    Chen Li. Future development of UAV/Anti UAV operations from the perspective of Nagorno-Karabakh conflict[J]. Defense Science & Technology Industry, 2021(1): 54-57
    [2] 陈浩天, 聂玉宝, 郭海龙. 纳卡冲突中无人机攻防及其启示[J]. 航天电子对抗, 2020, 36(6):61-64

    Chen Haotian, Nie Yubao, Guo Hailong. Revelations of attack and defense of UAV in Nagorno-Karabakh conflict[J]. Aerospace Electronic Warfare, 2020, 36(6): 61-64
    [3] 杨佳会, 朱超磊, 许佳. 俄乌冲突中的无人机运用[J]. 战术导弹技术, 2022(3):116-123

    Yang Jiahui, Zhu Chaolei, Xu Jia. Analysis of UAV deployment in Russia-Ukraine conflict[J]. Tactical Missile Technology, 2022(3): 116-123
    [4] Khurshudyan I, Ilyushina M, Khudov K. Russia and Ukraine are fighting the first full-scale drone war[EB/OL]. (2022-12-02). https://www.washingtonpost.com/world/2022/12/02/drones-russia-ukraine-air-war/.
    [5] 李立嘉, 沙长涛. 小屏蔽体屏蔽效能的测量方法[J]. 安全与电磁兼容, 2017(2):86-88

    Li Lijia, Sha Changtao. Test methods for shielding effectiveness of small-sized shielding enclosure[J]. Safety & EMC, 2017(2): 86-88
    [6] 黄刘宏, 杨吉祥, 陈晋央, 等. 电磁屏蔽室屏蔽等级和测量方法研究[J]. 电子科技, 2014, 27(10):171-174

    Huang Liuhong, Yang Jixiang, Chen Jinyang, et al. Study on shielding effectiveness and measurement methods for electromagnetic shielded enclosure[J]. Electronic Science and Technology, 2014, 27(10): 171-174
    [7] IEEE 299-2006, Standard method for measuring the effectiveness of electromagnetic shielding enclosures[S].
    [8] GB/T 12190-2021, 电磁屏蔽室屏蔽效能的测量方法[S]

    GB/T 12190-2021, Method for measuring the shielding effectiveness of electromagnetic shielding enclosures[S]
    [9] GJB 5792-2006, 军用涉密信息系统电磁屏蔽体等级划分和测量方法[S]

    GJB 5792-2006, Classification and measurement methods for shielded enclosures of military security information systems[S]
    [10] IEEE 299.1-2013, Standard method for measuring the shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m[S].
    [11] GB/T 39278-2020, 0.1m~2m屏蔽壳体屏蔽效能的测量方法[S]

    GB/T 39278-2020, Method for measuring the shielding effectiveness of shielding enclosures having all dimensions between 0.1 m and 2 m[S]
    [12] Jin Zusheng, Li Jianxuan, Shi Jialin, et al. An equivalent method for measuring shielding effectiveness of a microminiature electromagnetic shield using its large-scale model[C]//2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. 2022: 361-365.
    [13] 丁雪. 电磁兼容缩尺比测试方法介绍[J]. 电子质量, 2007(3):4-5

    Ding Xue. Introduction of reduced-scale model for EMC test[J]. Electronics Quality, 2007(3): 4-5
    [14] Law P E Jr. Shipboard electromagnetics[M]. Boston: Artech House, 1987.
    [15] 汤仕平, 陈黎平, 万海军, 等. 电磁兼容性船模预测在电波暗室内的实现[J]. 中国造船, 2006, 47(2):42-49 doi: 10.3969/j.issn.1000-4882.2006.02.006

    Tang Shiping, Chen Liping, Wan Haijun, et al. Realization of electromagnetic compatibility ship model prediction in anechoic chamber[J]. Shipbuilding of China, 2006, 47(2): 42-49 doi: 10.3969/j.issn.1000-4882.2006.02.006
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  160
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-11
  • 修回日期:  2023-12-30
  • 录用日期:  2023-12-30
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回