留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机电子控制器的高强辐射场干扰及防护

肖国松 刘家豪 马振洋 史春蕾

肖国松, 刘家豪, 马振洋, 等. 航空发动机电子控制器的高强辐射场干扰及防护[J]. 强激光与粒子束, 2024, 36: 043007. doi: 10.11884/HPLPB202436.230320
引用本文: 肖国松, 刘家豪, 马振洋, 等. 航空发动机电子控制器的高强辐射场干扰及防护[J]. 强激光与粒子束, 2024, 36: 043007. doi: 10.11884/HPLPB202436.230320
Xiao Guosong, Liu Jiahao, Ma Zhenyang, et al. HIRF interference research and protection of aircraft engine electronic controller[J]. High Power Laser and Particle Beams, 2024, 36: 043007. doi: 10.11884/HPLPB202436.230320
Citation: Xiao Guosong, Liu Jiahao, Ma Zhenyang, et al. HIRF interference research and protection of aircraft engine electronic controller[J]. High Power Laser and Particle Beams, 2024, 36: 043007. doi: 10.11884/HPLPB202436.230320

航空发动机电子控制器的高强辐射场干扰及防护

doi: 10.11884/HPLPB202436.230320
基金项目: 天津市科技局自然基金多元基金项目重点项目(21JCZDJC00860)
详细信息
    作者简介:

    肖国松,xiaoguosong@sina.cn

    通讯作者:

    马振洋,zyma@cauc.edu.cn

  • 中图分类号: V216.5

HIRF interference research and protection of aircraft engine electronic controller

  • 摘要: 针对航空发动机电子控制器(EEC)易受高强辐射场(HIRF)干扰问题,以ZF-M600型EEC为研究对象,通过三维电磁仿真软件CST对EEC建模并进行平面波辐照仿真,模拟HIRF对EEC的干扰效应,仿真结果表明,HIRF可以通过孔缝耦合进入EEC内部并在腔体内部产生谐振,谐振频率处电场强度显著增加。依据RTCA DO-160G在400 MHz~4 GHz开展EEC辐射敏感度试验,试验结果表明:EEC失效频点为2.40 GHz和3.48 GHz,敏感模块为模拟量输入输出模块,敏感现象为模拟量数据丢失。EEC失效频点与谐振频率接近, 说明EEC失效与腔体谐振有关,在EEC内部贴装吸波材料并进行仿真,分析吸波材料的放置方式和厚度对EEC谐振电磁干扰强度的影响,仿真结果表明,贴装吸波材料可以有效抑制谐振电磁干扰。
  • 图  1  发动机电子控制器

    Figure  1.  Aircraft Electronic Engine Controller

    图  2  EEC仿真模型

    Figure  2.  Simulation model of the EEC

    图  3  平面波辐照仿真

    Figure  3.  Plane wave irradiation simulation

    图  4  EEC平面波辐照仿真结果

    Figure  4.  Plane wave irradiation simulation results of the EEC

    图  5  试验环境及设备布置

    Figure  5.  Radiation sensitivity test environment

    图  6  EEC辐射敏感度试验原理图

    Figure  6.  Schematic diagram of EEC radiation sensitivity

    图  7  EEC试验前调试

    Figure  7.  Debugging before EEC test

    图  8  模拟量信号试验结果

    Figure  8.  Analog output module test results

    图  9  吸波材料的贴装位置

    Figure  9.  Placement position of absorbing material

    图  10  吸波材料防护效果

    Figure  10.  Protective effect of the absorbing material

    表  1  EEC外壳结构及材料参数

    Table  1.   Shell structure and material of the EEC

    structure material electrical conductivity/(s·m−1) relative permeability/(h·m−1) relative permittivity
    housings aluminium 3.56 1 1.5
    power switch aluminium 3.56 1 1.5
    aviation plug housings aluminum alloy 3.45 1 1.0
    aviation plug pins brass 1.59 1 1.0
    status indicator air 1.0
    screws iron 1.04 1 10.0
    copper of pcbs copper 5.80 1 1.5
    medium of pcbs FR4 5.96 1 5.0
    下载: 导出CSV

    表  2  测试设备型号及功能

    Table  2.   Test equipment type

    test equipment model function
    oscilloscope DSO1022A monitor digital output
    power analyzer PA2203A monitor analogue output
    computer G510 monitor serial output
    signal generator UTG2062A provide input signal
    power supply E3631A power supply
    impedance stabilized network DN-LISN160 prevent interference
    下载: 导出CSV

    表  3  COM1数据输出协议

    Table  3.   COM1 data output protocol

    statement structure output data byte offset
    statement header 0×48 1 0
    statement header 0×59 1 1
    statement header 0×53 1 2
    statement id number 0×02 1 3
    sentence body cycle count 2 4
    checksum 4 32
    下载: 导出CSV

    表  4  F类设备辐射敏感度试验场强

    Table  4.   Class F equipment radiation sensitivity test field

    frequency/GHz field strength/(V·m−1) sampling rate sampling interval/MHz stirring speed/(r·min−1)
    0.4~1.0 350 60 10 4
    1.0~2.0 1000 100 10 2
    2.0~4.0 1500 200 10 2
    下载: 导出CSV

    表  5  EEC谐振频率与失效频点

    Table  5.   EEC resonant frequency and failure frequency

    mode calculated resonant resonant frequency/GHz simulation results/GHz cutoff frequency/GHz
    f110 2.72 2.62 2.40
    f021 3.68 3.55 3.48
    下载: 导出CSV
  • [1] 潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002 doi: 10.11884/HPLPB202032.200088

    Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiationsusceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002 doi: 10.11884/HPLPB202032.200088
    [2] 马振洋, 左晶, 史春蕾, 等. 机载电子设备屏蔽效能测试与优化[J]. 航空学报, 2020, 41:323538

    Ma Zhenyang, Zuo Jing, Shi Chunlei, et al. Test and optimizati on of shield effectiveness for airborne electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41: 323538
    [3] Somolinos D R, Gallardo B P, Estevez J C, et al. Shielding effectiveness measurement of an UAV simplified demonstrator through low-level swept field (LLSF) test[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1665-1673. doi: 10.1109/TEMC.2022.3202636
    [4] Tortorich R P, Morell W, Reiner E, et al. A study on the radiated susceptibility of printed circuit boards and the effects of via fencing[J]. Electronics, 2021, 10: 539. doi: 10.3390/electronics10050539
    [5] Tang Shiping, Mao Junfa. A quantification control method of electromagnetic environmental effects for complex systems[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(2): 245-261. doi: 10.1080/09205071.2020.1832149
    [6] 赵治国, 郑浩月. 典型电子设备强电磁安全效应试验研究[J]. 通信技术, 2019, 52(8):2008-2013

    Zhao Zhiguo, Zheng Haoyue. Experimental exploration on high EM safety effect of typical electronic equipment[J]. Communications Technology, 2019, 52(8): 2008-2013
    [7] Dunkin E L, Duggan T J, Noyce R P. Hazards of electromagnetic radiation to ordnance (HERO) instrumentation developments for high intensity radiated field (HIRF) testing of aircraft[C]//Proceedings of 2019 ESA Workshop on Aerospace EMC. 2019: 1-6.
    [8] 刘勇, 马跃进, 司晓亮, 等. 基于高强度辐射场的低电平扫频场试验方法研究[J]. 微波学报, 2020, 36(3):20-25

    Liu Yong, Ma Yuejin, Si Xiaoliang, et al. Research on low level swept field test method based on high intensity radiation field[J]. Journal of Microwaves, 2020, 36(3): 20-25
    [9] Ückerseifer J, Gronwald F. Numerical and experimental analysis of non-coaxial DCI-excitations as HIRF-replacement in automotive immunity testing[C]//Proceedings of 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE. 2020: 1-6.
    [10] Sun Jiangning, Pan Xiaodong, Lu Xinfu, et al. Unshielded two-wire circuit systems under weak unbalance for high-intensity radiated field radiated susceptibility by double bulk current injection[J]. Electronics, 2022, 11: 2175. doi: 10.3390/electronics11142175
    [11] 李琛, 文彬鹤, 左伟, 等. 带数字电子备份的发动机控制系统设计与验证[J/OL]. 航空动力学报, (2023-01-04)[2023-02-10].https://doi.org/10.13224/j.cnki.jasp.20220602

    Li Chen, Wen Binhe, Zuo Wei, et al. Design and verification of engine control system with digital electronic backup[J/OL]. Journal of Aerospace Power, (2023-01-04)[2023-02-10].https://doi.org/10.13224/j.cnki.jasp.20220602
    [12] Montazeri-Gh M, Abyaneh S. Real-time simulation of a turbo-shaft engine's electronic control unit[J]. Mechanics & Industry, 2017, 18: 503.
    [13] 何锋, 周璇, 赵长啸, 等. 航空电子系统机载网络实时性能评价技术[J]. 北京航空航天大学学报, 2020, 46(4):651-665

    He Feng, Zhou Xuan, Zhao Changxiao, et al. Real-time performance evaluation technology of airborne network for avionics system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 651-665
    [14] Liang Tao, Xie Yanzhao. Determining incidence and polarization of electromagnetic field for maximal/minimal coupling to transmission line system[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(11): 1021-1024. doi: 10.1109/LMWC.2020.3021695
    [15] 郭晓涛, 何昭, 王少华, 等. 电磁混响室场均匀性评定方法的实验研究[J]. 北京邮电大学学报, 2017, 40(4):86-90

    Guo Xiaotao, He Zhao, Wang Shaohua, et al. Experiment on the field uniformity validation methods of reverberation chamber[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(4): 86-90
    [16] Gifuni A, Gradoni G, Serra R, et al. On the improvement of shielding effectiveness measurements of materials and gaskets in reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1653-1664. doi: 10.1109/TEMC.2022.3193191
    [17] 肖培, 李佳维, 张超, 等. 双层屏蔽腔内线缆负载电磁耦合的EMT分析方法[J]. 微波学报, 2021, 37(5):52-57

    Xiao Pei, Li Jiawei, Zhang Chao, et al. An EMT analysis method for calculating the electromagnetic coupling of transmission line inside a double-layer cavity-time performance evaluation technology of airborne network for avionics system[J]. Journal of Microwaves, 2021, 37(5): 52-57
    [18] Zhou Jincheng, Wang Xuetian. Fast prediction of the shielding effectiveness of heterotypic enclosures based on EMT theory[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23463.
    [19] 郝建红, 蒋璐行, 范杰清, 等. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型[J]. 电工技术学报, 2017, 32(9):101-111

    Hao Jianhong, Jiang Luxing, Fan Jieqing, et al. Electromagnetic topology model for the shielding effectiveness of an apertured enclosure with a lossy dielectric layer[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 101-111
    [20] Sun Jian, Gong Yanfei, Jiang Luhang. An improved model for the analysis of the shielding performance of an apertured enclosure based on EMT theory and BLT equation[J]. Journal of Electromagnetic Waves and Applications, 2022, 36(2): 246-260. doi: 10.1080/09205071.2021.1961614
    [21] Yan Liping, Zhang Xindan, Zhao Xiang, et al. A fast and efficient analytical modeling approach for external electromagnetic field coupling to transmission lines in a metallic enclosure[J]. IEEE Access, 2018, 6: 50272-50277. doi: 10.1109/ACCESS.2018.2867686
    [22] Ye Zhihong, Lu Changchang, Zhang Yu. Coupling analysis of penetrated wire connecting two electronic devices using a time domain hybrid method[J]. Microwave and Optical Technology Letters, 2021, 63(9): 2359-2363. doi: 10.1002/mop.32916
    [23] RTCA Inc. Environmental conditions and test proceduresfor airborne equipment[R]. RTCA/DO-160G, Washing: RTCA Inc, 2010.
    [24] Basyigit I B, Dogan H, Helhel S. The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures[J]. Journal of Microwave Power and Electromagnetic Energy, 2019, 53(2): 115-127. doi: 10.1080/08327823.2019.1607496
    [25] Xie Penghao, Yuan Jiansheng. Simulation analysis of electromagnetic coupling law of one typical electronic circuit box body[J]. The Journal of Engineering, 2017, 2017(14): 2695-2698. doi: 10.1049/joe.2017.0834
    [26] 谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013: 54-60

    Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technololgy[M]. Beijing: National Defense Industry Press, 2013: 54-60
    [27] 邹澍, 周晓萍. 电磁兼容原理、技术和应用[M]. 北京: 清华大学出版社, 2007: 176-177

    Zou Shu, Zhou Xiaoping. Principle technology and application of electromagnetic compatibility[M]. Beijing: Tsinghua University Press, 2007: 176-177
    [28] 曾美玲, 蔡金良, 易早, 等. 孔缝对金属腔体强电磁脉冲耦合特性影响研究[J]. 强激光与粒子束, 2021, 33:043004 doi: 10.11884/HPLPB202133.200336

    Zeng Meiling, Cai Jinliang, Yi Zao, et al. Effect of aperture on shielding performance of metal cavity under excitation of high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 043004 doi: 10.11884/HPLPB202133.200336
    [29] 赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079

    Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079
    [30] 李小沙. 发动机电子控制器EEC技术手册[EB/OL]. 北京: 北京卓枫科技有限公司, 2019. [2023-11-06]

    Li Xiaoshao. Engine electronic controller EEC use and maintenance manual[EB/OL]. Beijing: Beijing Zhuofeng Technology, 2019. [2023-11-06]
    [31] 陈生. 吸波材料抑制孔腔谐振研究[D]. 西安: 西安电子科技大学, 2008

    Chen Sheng. Study on suppression of aperture-cavity resonance by means of absorbing materials[D]. Xi’an: Xidian University, 2008
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  119
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-12-13
  • 录用日期:  2023-12-29
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回