HIRF interference research and protection of aircraft engine electronic controller
-
摘要: 针对航空发动机电子控制器(EEC)易受高强辐射场(HIRF)干扰问题,以ZF-M600型EEC为研究对象,通过三维电磁仿真软件CST对EEC建模并进行平面波辐照仿真,模拟HIRF对EEC的干扰效应,仿真结果表明,HIRF可以通过孔缝耦合进入EEC内部并在腔体内部产生谐振,谐振频率处电场强度显著增加。依据RTCA DO-160G在400 MHz~4 GHz开展EEC辐射敏感度试验,试验结果表明:EEC失效频点为2.40 GHz和3.48 GHz,敏感模块为模拟量输入输出模块,敏感现象为模拟量数据丢失。EEC失效频点与谐振频率接近, 说明EEC失效与腔体谐振有关,在EEC内部贴装吸波材料并进行仿真,分析吸波材料的放置方式和厚度对EEC谐振电磁干扰强度的影响,仿真结果表明,贴装吸波材料可以有效抑制谐振电磁干扰。Abstract: To solve the problem that the aviation Engine Electronic Controller (EEC) is easily disturbed by high-intensity radiation field (HIRF) interference, the plane wave irradiation simulation is performed to simulate the interference effect of HIRF on the EEC through the software CST for the modeling of the EEC. The simulation results show that HIRF can be coupled into the EEC and the electric field strength increases significantly at the resonance frequency. Conducting EEC radiated susceptibility tests at 400 MHz-4 GHz, the test results show that the EEC failure frequency points are 2.40 GHz and 3.84 GHz, the susceptive module is the analog input and output module, The EEC failure frequency is close to the resonance frequency, and the EEC failure is related to the cavity resonance. The wave-absorbing material is mounted inside the EEC and simulation is carried out, and the simulation results show that the wave-absorbing material can effectively suppress the resonance electromagnetic interference, and the results of the study can provide a theoretical basis and reference for the HIRF protection of the EEC.
-
表 1 EEC外壳结构及材料参数
Table 1. Shell structure and material of the EEC
structure material electrical conductivity/(s·m−1) relative permeability/(h·m−1) relative permittivity housings aluminium 3.56 1 1.5 power switch aluminium 3.56 1 1.5 aviation plug housings aluminum alloy 3.45 1 1.0 aviation plug pins brass 1.59 1 1.0 status indicator air − − 1.0 screws iron 1.04 1 10.0 copper of pcbs copper 5.80 1 1.5 medium of pcbs FR4 5.96 1 5.0 表 2 测试设备型号及功能
Table 2. Test equipment type
test equipment model function oscilloscope DSO1022A monitor digital output power analyzer PA2203A monitor analogue output computer G510 monitor serial output signal generator UTG2062A provide input signal power supply E3631A power supply impedance stabilized network DN-LISN160 prevent interference 表 3 COM1数据输出协议
Table 3. COM1 data output protocol
statement structure output data byte offset statement header 0×48 1 0 statement header 0×59 1 1 statement header 0×53 1 2 statement id number 0×02 1 3 sentence body cycle count 2 4 checksum — 4 32 表 4 F类设备辐射敏感度试验场强
Table 4. Class F equipment radiation sensitivity test field
frequency/GHz field strength/(V·m−1) sampling rate sampling interval/MHz stirring speed/(r·min−1) 0.4~1.0 350 60 10 4 1.0~2.0 1000 100 10 2 2.0~4.0 1500 200 10 2 表 5 EEC谐振频率与失效频点
Table 5. EEC resonant frequency and failure frequency
mode calculated resonant resonant frequency/GHz simulation results/GHz cutoff frequency/GHz f110 2.72 2.62 2.40 f021 3.68 3.55 3.48 -
[1] 潘晓东, 魏光辉, 万浩江, 等. 电子设备电磁辐射敏感度测试相关问题研究[J]. 强激光与粒子束, 2020, 32:073002 doi: 10.11884/HPLPB202032.200088Pan Xiaodong, Wei Guanghui, Wan Haojiang, et al. Research on several test issues of electromagnetic radiationsusceptibility for electronic equipment[J]. High Power Laser and Particle Beams, 2020, 32: 073002 doi: 10.11884/HPLPB202032.200088 [2] 马振洋, 左晶, 史春蕾, 等. 机载电子设备屏蔽效能测试与优化[J]. 航空学报, 2020, 41:323538Ma Zhenyang, Zuo Jing, Shi Chunlei, et al. Test and optimizati on of shield effectiveness for airborne electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41: 323538 [3] Somolinos D R, Gallardo B P, Estevez J C, et al. Shielding effectiveness measurement of an UAV simplified demonstrator through low-level swept field (LLSF) test[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1665-1673. doi: 10.1109/TEMC.2022.3202636 [4] Tortorich R P, Morell W, Reiner E, et al. A study on the radiated susceptibility of printed circuit boards and the effects of via fencing[J]. Electronics, 2021, 10: 539. doi: 10.3390/electronics10050539 [5] Tang Shiping, Mao Junfa. A quantification control method of electromagnetic environmental effects for complex systems[J]. Journal of Electromagnetic Waves and Applications, 2021, 35(2): 245-261. doi: 10.1080/09205071.2020.1832149 [6] 赵治国, 郑浩月. 典型电子设备强电磁安全效应试验研究[J]. 通信技术, 2019, 52(8):2008-2013Zhao Zhiguo, Zheng Haoyue. Experimental exploration on high EM safety effect of typical electronic equipment[J]. Communications Technology, 2019, 52(8): 2008-2013 [7] Dunkin E L, Duggan T J, Noyce R P. Hazards of electromagnetic radiation to ordnance (HERO) instrumentation developments for high intensity radiated field (HIRF) testing of aircraft[C]//Proceedings of 2019 ESA Workshop on Aerospace EMC. 2019: 1-6. [8] 刘勇, 马跃进, 司晓亮, 等. 基于高强度辐射场的低电平扫频场试验方法研究[J]. 微波学报, 2020, 36(3):20-25Liu Yong, Ma Yuejin, Si Xiaoliang, et al. Research on low level swept field test method based on high intensity radiation field[J]. Journal of Microwaves, 2020, 36(3): 20-25 [9] Ückerseifer J, Gronwald F. Numerical and experimental analysis of non-coaxial DCI-excitations as HIRF-replacement in automotive immunity testing[C]//Proceedings of 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE. 2020: 1-6. [10] Sun Jiangning, Pan Xiaodong, Lu Xinfu, et al. Unshielded two-wire circuit systems under weak unbalance for high-intensity radiated field radiated susceptibility by double bulk current injection[J]. Electronics, 2022, 11: 2175. doi: 10.3390/electronics11142175 [11] 李琛, 文彬鹤, 左伟, 等. 带数字电子备份的发动机控制系统设计与验证[J/OL]. 航空动力学报, (2023-01-04)[2023-02-10].https://doi.org/10.13224/j.cnki.jasp.20220602Li Chen, Wen Binhe, Zuo Wei, et al. Design and verification of engine control system with digital electronic backup[J/OL]. Journal of Aerospace Power, (2023-01-04)[2023-02-10].https://doi.org/10.13224/j.cnki.jasp.20220602 [12] Montazeri-Gh M, Abyaneh S. Real-time simulation of a turbo-shaft engine's electronic control unit[J]. Mechanics & Industry, 2017, 18: 503. [13] 何锋, 周璇, 赵长啸, 等. 航空电子系统机载网络实时性能评价技术[J]. 北京航空航天大学学报, 2020, 46(4):651-665He Feng, Zhou Xuan, Zhao Changxiao, et al. Real-time performance evaluation technology of airborne network for avionics system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 651-665 [14] Liang Tao, Xie Yanzhao. Determining incidence and polarization of electromagnetic field for maximal/minimal coupling to transmission line system[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(11): 1021-1024. doi: 10.1109/LMWC.2020.3021695 [15] 郭晓涛, 何昭, 王少华, 等. 电磁混响室场均匀性评定方法的实验研究[J]. 北京邮电大学学报, 2017, 40(4):86-90Guo Xiaotao, He Zhao, Wang Shaohua, et al. Experiment on the field uniformity validation methods of reverberation chamber[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(4): 86-90 [16] Gifuni A, Gradoni G, Serra R, et al. On the improvement of shielding effectiveness measurements of materials and gaskets in reverberation chambers[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1653-1664. doi: 10.1109/TEMC.2022.3193191 [17] 肖培, 李佳维, 张超, 等. 双层屏蔽腔内线缆负载电磁耦合的EMT分析方法[J]. 微波学报, 2021, 37(5):52-57Xiao Pei, Li Jiawei, Zhang Chao, et al. An EMT analysis method for calculating the electromagnetic coupling of transmission line inside a double-layer cavity-time performance evaluation technology of airborne network for avionics system[J]. Journal of Microwaves, 2021, 37(5): 52-57 [18] Zhou Jincheng, Wang Xuetian. Fast prediction of the shielding effectiveness of heterotypic enclosures based on EMT theory[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2022, 32: e23463. [19] 郝建红, 蒋璐行, 范杰清, 等. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型[J]. 电工技术学报, 2017, 32(9):101-111Hao Jianhong, Jiang Luxing, Fan Jieqing, et al. Electromagnetic topology model for the shielding effectiveness of an apertured enclosure with a lossy dielectric layer[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 101-111 [20] Sun Jian, Gong Yanfei, Jiang Luhang. An improved model for the analysis of the shielding performance of an apertured enclosure based on EMT theory and BLT equation[J]. Journal of Electromagnetic Waves and Applications, 2022, 36(2): 246-260. doi: 10.1080/09205071.2021.1961614 [21] Yan Liping, Zhang Xindan, Zhao Xiang, et al. A fast and efficient analytical modeling approach for external electromagnetic field coupling to transmission lines in a metallic enclosure[J]. IEEE Access, 2018, 6: 50272-50277. doi: 10.1109/ACCESS.2018.2867686 [22] Ye Zhihong, Lu Changchang, Zhang Yu. Coupling analysis of penetrated wire connecting two electronic devices using a time domain hybrid method[J]. Microwave and Optical Technology Letters, 2021, 63(9): 2359-2363. doi: 10.1002/mop.32916 [23] RTCA Inc. Environmental conditions and test proceduresfor airborne equipment[R]. RTCA/DO-160G, Washing: RTCA Inc, 2010. [24] Basyigit I B, Dogan H, Helhel S. The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures[J]. Journal of Microwave Power and Electromagnetic Energy, 2019, 53(2): 115-127. doi: 10.1080/08327823.2019.1607496 [25] Xie Penghao, Yuan Jiansheng. Simulation analysis of electromagnetic coupling law of one typical electronic circuit box body[J]. The Journal of Engineering, 2017, 2017(14): 2695-2698. doi: 10.1049/joe.2017.0834 [26] 谭志良, 胡小锋, 毕军建, 等. 电磁脉冲防护理论与技术[M]. 北京: 国防工业出版社, 2013: 54-60Tan Zhiliang, Hu Xiaofeng, Bi Junjian, et al. Electromagnetic pulse protection theory and technololgy[M]. Beijing: National Defense Industry Press, 2013: 54-60 [27] 邹澍, 周晓萍. 电磁兼容原理、技术和应用[M]. 北京: 清华大学出版社, 2007: 176-177Zou Shu, Zhou Xiaoping. Principle technology and application of electromagnetic compatibility[M]. Beijing: Tsinghua University Press, 2007: 176-177 [28] 曾美玲, 蔡金良, 易早, 等. 孔缝对金属腔体强电磁脉冲耦合特性影响研究[J]. 强激光与粒子束, 2021, 33:043004 doi: 10.11884/HPLPB202133.200336Zeng Meiling, Cai Jinliang, Yi Zao, et al. Effect of aperture on shielding performance of metal cavity under excitation of high-intensity electromagnetic pulse[J]. High Power Laser and Particle Beams, 2021, 33: 043004 doi: 10.11884/HPLPB202133.200336 [29] 赵翔, 茹梦圆, 闫丽萍, 等. 电磁混响室搅拌方式研究综述[J]. 强激光与粒子束, 2020, 32:063001 doi: 10.11884/HPLPB202032.200079Zhao Xiang, Ru Mengyuan, Yan Liping, et al. A review of research on stirring methods of electromagnetic reverberation chamber[J]. High Power Laser and Particle Beams, 2020, 32: 063001 doi: 10.11884/HPLPB202032.200079 [30] 李小沙. 发动机电子控制器EEC技术手册[EB/OL]. 北京: 北京卓枫科技有限公司, 2019. [2023-11-06]Li Xiaoshao. Engine electronic controller EEC use and maintenance manual[EB/OL]. Beijing: Beijing Zhuofeng Technology, 2019. [2023-11-06] [31] 陈生. 吸波材料抑制孔腔谐振研究[D]. 西安: 西安电子科技大学, 2008Chen Sheng. Study on suppression of aperture-cavity resonance by means of absorbing materials[D]. Xi’an: Xidian University, 2008