留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载共口径多波束赋形反射面天线设计

杨小凤 杨承坤 郭庆功

杨小凤, 杨承坤, 郭庆功. 星载共口径多波束赋形反射面天线设计[J]. 强激光与粒子束, 2024, 36: 093004. doi: 10.11884/HPLPB202436.240012
引用本文: 杨小凤, 杨承坤, 郭庆功. 星载共口径多波束赋形反射面天线设计[J]. 强激光与粒子束, 2024, 36: 093004. doi: 10.11884/HPLPB202436.240012
Yang Xiaofeng, Yang Chengkun, Guo Qinggong. Design of common aperture multi-beam shaped reflector antenna for satellite communications[J]. High Power Laser and Particle Beams, 2024, 36: 093004. doi: 10.11884/HPLPB202436.240012
Citation: Yang Xiaofeng, Yang Chengkun, Guo Qinggong. Design of common aperture multi-beam shaped reflector antenna for satellite communications[J]. High Power Laser and Particle Beams, 2024, 36: 093004. doi: 10.11884/HPLPB202436.240012

星载共口径多波束赋形反射面天线设计

doi: 10.11884/HPLPB202436.240012
基金项目: 国家自然科学基金项目(62071316)
详细信息
    作者简介:

    杨小凤,18349295891@163.com

    通讯作者:

    郭庆功,guoqingong@scu.Edu.cn

  • 中图分类号: TN828

Design of common aperture multi-beam shaped reflector antenna for satellite communications

  • 摘要: 为了满足星载通信中多任务并行需求,提出了一种由格里高利型反射面和三个馈源喇叭天线组成的共口径多波束反射面天线,该天线能够产生两个固定轮廓波束和一个点波束。天线设计是采用射线追踪法确定点波束馈源位置以建立天线基础结构,并通过Zernike多项式和Cubic B-splines函数共同对主、副反射面进行赋形优化来完成。为了验证该方法的有效性,对口径为1.1 m的天线进行仿真设计,结果表明两个赋形轮廓波束在Ku收、发频段边缘增益(EOC gain)分别为27.7、28.0、28.0、28.2 dBi,固定点波束在服务区EOC gain不低于34 dBi并且在0~6.5°范围内的扫描波束增益不低于35 dBi。
  • 图  1  双偏置多馈源反射面天线

    Figure  1.  Dual-offset and multi-feeds reflector antenna

    图  2  赋形区域

    Figure  2.  Shaped area

    图  3  发射频V:12.5 GHz

    Figure  3.  Vertical transmission frequency:12.5 GHz

    图  4  接收频H:14.25 GHz

    Figure  4.  Horizontal reception frequency:14.25 GHz

    图  5  发射频H:12.5 GHz

    Figure  5.  Horizontal transmission frequency:12.5 GHz

    图  6  收接频V:14.25 GHz

    Figure  6.  Vertical reception frequency:14.25 GHz

    图  7  发射频H:17.5 GHz

    Figure  7.  Horizontal transmission frequency:17.5 GHz

    图  8  接收频V:17.9 GHz

    Figure  8.  Vertical reception frequency:17.9 GHz

    图  9  x方向扫描:17.5 GHz

    Figure  9.  x-direction scanning :17.5 GHz

    图  12  y方向扫描:17.9 GHz

    Figure  12.  y-direction scanning :17.9 GHz

    图  10  x方向扫描:17.9 GHz

    Figure  10.  x-direction scanning :17.9 GHz

    图  11  y方向扫描:17.5 GHz

    Figure  11.  y-direction scanning :17.5 GHz

    表  1  天线设计参数

    Table  1.   Design parameters for antenna

    Dm/m F/m Dsx/m f/m feed1 position/m feed2 position/m feed3 position/m SR eccentricity
    1.1 0.88 0.278 0.15 (−0.13,0,0.076) (0.035,0.055,0.92) (0.045,−0.043,0.84) 0.25
    下载: 导出CSV

    表  2  任务指标

    Table  2.   Task metrics

    item EOC gain/dBi XPD/dB
    shaped beam 1 27.5 29
    shaped beam 2 28.0 25
    spot beam 34.0 30
    EOC gain: edge-of-coverage gain; XPD: cross-polarization discrimination
    下载: 导出CSV

    表  3  赋形波束数据

    Table  3.   Date of shaped beam

    shaped data transmitted form frequency/GHz linear polarization EOC gain/dBi XPD/dB EOC gain/dBi[10]
    shaped beam 2

    TX12.50H28.22527.3
    RX14.25V28.02527.1
    shaped beam 1

    TX12.50V28.02926.1
    RX14.25H27.72926.1
    H: horizontal ; V: vertical ; TX: transmit ; RX: receive
    下载: 导出CSV

    表  4  赋形波束GAP

    Table  4.   GAP of shaped beam

    shaped data transmitted form Dλ GAP
    shaped beam 2TX45.836706
    RX52.256404
    shaped beam 1TX45.839149
    RX52.258538
    下载: 导出CSV

    表  5  点波束增益

    Table  5.   Gain of spot beam

    spot beam transmitted form gain/dBi XPD/dB
    #1 TX 34.58 30
    RX 34.78 30
    #2 TX 35.04 32
    RX 35.27 31
    #3 TX 35.38 33
    RX 35.77 33
    下载: 导出CSV

    表  6  点波束增益

    Table  6.   Gain of spot beam

    $ \Delta x/\mathrm{m}\mathrm{m} $ $ \Delta y/\mathrm{m}\mathrm{m} $ $ \theta$/(°) gain/dBi $ \Delta x/\mathrm{m}\mathrm{m} $ $ \Delta y/\mathrm{m}\mathrm{m} $ $ \theta $/(°) gain/dBi
    40 0 −2.1 35.74 0 −40 −2.2 35.35
    80 0 −4.3 35.67 0 −80 −4.3 35.27
    120 0 −6.4 35.32 0 −120 −6.5 35.04
    140 0 −7.4 35.07 0 −140 −7.6 34.80
    下载: 导出CSV
  • [1] Rao S, Hsu C C, Wang J. Common aperture satellite antenna system for multiple contoured beams and multiple spot beams[C]//2010 IEEE Antennas and Propagation Society International Symposium. 2010: 1-4.
    [2] Pinsard B, Renaud D, Diez H. New surface expansion for fast PO synthesis of shaped reflector antennas[C]//Tenth International Conference on Antennas and Propagation. 1997: 25-29.
    [3] 李建军, 尹鹏飞, 赵现斌. 一种星载通信混合反射面天线的设计方法[J]. 电子与信息学报, 2020, 42(11):2621-2628 doi: 10.11999/JEIT190564

    Li Jianjun, Yin Pengfei, Zhao Xianbin. A synthesis method of hybrid reflector antenna for satellite communications[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2621-2628 doi: 10.11999/JEIT190564
    [4] 潘昱旭, 王梓丞, 郭庆功. K波段平顶波束赋形反射面天线设计[J]. 四川大学学报(自然科学版), 2021, 58:043004

    Pan Yuxu, Wang Zicheng, GUO Qinggong. Design of a K-band flat-top contoured-beam reflector antenna[J]. Journal of Sichuan University (Natural Science Edition), 2021, 58: 043004
    [5] Dastranj A, Abiri H, Mallahzadeh A. Design of a broadband cosecant squared pattern reflector antenna using IWO algorithm[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3895-3900. doi: 10.1109/TAP.2013.2254439
    [6] Mahajan M, Jyoti R, Sood K, et al. A method of generating simultaneous contoured and pencil beams from single shaped reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5297-5301. doi: 10.1109/TAP.2013.2271492
    [7] Lee J J, Parad L I, Chu R S. A shaped offset-fed dual-reflector antenna[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(2): 165-171. doi: 10.1109/TAP.1979.1142056
    [8] 李建军, 尹鹏飞, 赵现斌, 等. 双馈源双偏置结构星载通信多波束天线[J]. 微波学报, 2018, 34(4):10-15

    Li Jianjun, Yin Pengfei, Zhao Xianbin, et al. Multi-beam antenna with double feeds and dual-offset configuration for space-borne communication[J]. Journal of Microwaves, 2018, 34(4): 10-15
    [9] Wan Jixiang, Yan Tao, Wang Feng. A hybrid reflector antenna for two contoured beams with different shapes[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1171-1175. doi: 10.1109/LAWP.2018.2836927
    [10] Granet C. Designing classical offset Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters[J]. IEEE Antennas and Propagation Magazine, 2002, 44(3): 114-123. doi: 10.1109/MAP.2002.1028736
    [11] Li Tiansong, Shi Xinling, Chen Jianhua, et al. The global double cubic B-spline surface interpolation based on particle swarm optimization[C]//2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). 2013: 1-5.
    [12] Piegl L, Tiller W. The NURBS book [M]. 2nd ed. Berlin: Springer, 1997.
    [13] Gupta R C, Sagi S K, Raja K P, et al. Shaped prime-focus reflector antenna for satellite communication[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1945-1948. doi: 10.1109/LAWP.2017.2689800
    [14] Krichevsky V, DiFonzo D. Optimum beam scanning in offset single and dual reflector antennas[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(2): 179-188. doi: 10.1109/TAP.1985.1143547
    [15] Rao S, Shafai L, Sharma S. Handbook of reflector antennas and feed systems Volume I: theory and design of reflectors[M]. Boston: Artech House, 2013.
    [16] Rao S, Shafai L, Sharma S. Handbook of reflector antennas and feed systems volume III: applications of reflectors[M]. Boston: Artech House, 2013.
    [17] Rao S K. Advanced antenna technologies for satellite communications payloads[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1205-1217. doi: 10.1109/TAP.2015.2391283
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  61
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-09
  • 修回日期:  2024-05-29
  • 录用日期:  2024-05-29
  • 网络出版日期:  2024-08-22
  • 刊出日期:  2024-08-16

目录

    /

    返回文章
    返回