留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种虚拟核退役环境下多无人车辐射巡测系统设计

冯青林 胡春鹤 杜垚垚

冯青林, 胡春鹤, 杜垚垚. 一种虚拟核退役环境下多无人车辐射巡测系统设计[J]. 强激光与粒子束, 2024, 36: 129002. doi: 10.11884/HPLPB202436.240069
引用本文: 冯青林, 胡春鹤, 杜垚垚. 一种虚拟核退役环境下多无人车辐射巡测系统设计[J]. 强激光与粒子束, 2024, 36: 129002. doi: 10.11884/HPLPB202436.240069
Feng Qinglin, Hu Chunhe, Du Yaoyao. Design of a multi unmanned vehicle radiation monitoring system in virtual nuclear retirement environment[J]. High Power Laser and Particle Beams, 2024, 36: 129002. doi: 10.11884/HPLPB202436.240069
Citation: Feng Qinglin, Hu Chunhe, Du Yaoyao. Design of a multi unmanned vehicle radiation monitoring system in virtual nuclear retirement environment[J]. High Power Laser and Particle Beams, 2024, 36: 129002. doi: 10.11884/HPLPB202436.240069

一种虚拟核退役环境下多无人车辐射巡测系统设计

doi: 10.11884/HPLPB202436.240069
基金项目: 国家自然科学基金项目(61703047)
详细信息
    作者简介:

    冯青林,18810536737@163.com

    胡春鹤,huchunhe@bjfu.edu.cn

    杜垚垚,duyy@ihep.ac.cn

  • 中图分类号: TL75+1;TP242.6

Design of a multi unmanned vehicle radiation monitoring system in virtual nuclear retirement environment

  • 摘要: 为提高核退役设施辐射测量效率、减少测量人员遭受放射性照射的风险,设计了一种面向多无人车编队辐射巡测控制系统。首先,采用领航-跟随编队策略,控制机器人以预定队形行进,同时实时采集每个无人车在编队行进过程中巡测到的辐射强度信息以及它们各自的位置数据,初步分析环境内部的辐射分布状况。其次,利用辐射强度与位置信息,运用马尔科夫链蒙特卡罗方法对放射源参数进行估计。仿真结果表明,无人车编队不仅可以在辐射环境下按照自动规划的路径运动并对放射源位置进行参数估计,且行进过程中距离误差为0~0.055 m,观测角误差为0~0.035 rad。
  • 图  1  核退役环境和辐射分布

    Figure  1.  Nuclear decommissioning scenarios and radiation distribution

    图  2  基于距离角度($d - \beta $)领航跟随法的编队模型

    Figure  2.  Formation model based on $d - \beta $ leader-follower method

    图  3  改进线性自抗扰编队控制器

    Figure  3.  Improved linear active disturbance rejection formation control

    图  4  不同编队控制策略下的距离误差

    Figure  4.  Distance error under different formation control strategies

    图  5  不同编队控制策略下的观测角误差

    Figure  5.  Observation angle error under different formation control strategies

    图  6  系统仿真平台整体架构

    Figure  6.  Overall architecture of system simulation platform

    图  7  Gazebo仿真结果

    Figure  7.  Simulation results of Gazebo

    表  1  核退役环境无人车主要技术参数

    Table  1.   Main technical parameters of unmanned vehicles in nuclear decommissioning environment

    dimensions/mm3 wheel
    diameter/mm
    maximrm
    load/kg
    battery
    life/h
    maximum
    speed/(m·s−1)
    operating
    temperature/℃
    operating
    humidity
    γ detection
    range/(μsV·h−1)
    LiDAR
    wavelength/mm point rate/MHz
    138×178×192 66 15 >4 1 −20~50 5%~95% 0.1/3 905 1.152
    下载: 导出CSV
  • [1] 赵恒柱, 杨明翰, 邓多成, 等. 期望核辐射剂量下移动机器人的路径规划[J]. 辐射研究与辐射工艺学报, 2021, 39:050601 doi: 10.11889/j.1000-3436.2021.rrj.39.050601

    Zhao Hengzhu, Yang Minghan, Deng Duocheng, et al. Path planning of mobile robot under expected radiation dose[J]. Journal of Radiation Research and Radiation Processing, 2021, 39: 050601 doi: 10.11889/j.1000-3436.2021.rrj.39.050601
    [2] 冯常, 王从政, 赵建平, 等. 核环境作业机器人研究现状及关键技术分析[J]. 光电工程, 2020, 47:200338

    Feng Chang, Wang Congzheng, Zhao Jianping, et al. Research status and key technologies analysis of operating robots for nuclear environment[J]. Opto-Electronic Engineering, 2020, 47: 200338
    [3] Ma Li, Zhu Fanglai, Zhang Jiancheng, et al. Leader-follower asymptotic consensus control of multiagent systems: an observer-based disturbance reconstruction approach[J]. IEEE Transactions on Cybernetics, 2023, 53(2): 1311-1323. doi: 10.1109/TCYB.2021.3125332
    [4] Li Juncheng, Ran Maopeng, Wang Han, et al. A behavior-based mobile robot navigation method with deep reinforcement learning[J]. Unmanned Systems, 2021, 9(3): 201-209. doi: 10.1142/S2301385021410041
    [5] Wu Enming, Sun Yidong, Huang Jianyu, et al. Multi UAV cluster control method based on virtual core in improved artificial potential field[J]. IEEE Access, 2020, 8: 131647-131661. doi: 10.1109/ACCESS.2020.3009972
    [6] Wang Yongheng, Cai Li, Luo Xiaoyu, et al. Simulation of action potential propagation based on the ghost structure method[J]. Scientific Reports, 2019, 9: 10927. doi: 10.1038/s41598-019-47321-2
    [7] 崔建伟. 东南大学研制成功小型核化探测与应急处理遥操作机器人[J]. 机器人技术与应用, 2012(1):44-45

    Cui Jianwei. Southeast university successfully developed a small nuclear detection and emergency handling teleoperation robot[J]. Robot Technique and Application, 2012(1): 44-45
    [8] Nagatani K, Kiribayashi S, Okada Y, et al. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots[J]. Journal of Field Robotics, 2013, 30(1): 44-63. doi: 10.1002/rob.21439
    [9] 沈华亚, 朱万宁, 董强敏, 等. 耐强辐射遥控探测机器人研制[J]. 核电子学与探测技术, 2015, 35(1):74-78

    Shen Huaya, Zhu Wanning, Dong Qiangmin, et al. Development of the tele-control robot for nuclear detection in intense radiation environment[J]. Nuclear Electronics & Detection Technology, 2015, 35(1): 74-78
    [10] 魏世龙, 曾国强, 宋雨菲, 等. 核辐射场无线移动监测系统设计[J]. 核电子学与探测技术, 2015, 35(12):1227-1229,1245 doi: 10.3969/j.issn.0258-0934.2015.12.016

    Wei Shilong, Zeng Guoqiang, Song Yufei, et al. Wireless mobile monitoring system for nuclear radiation field design[J]. Nuclear Electronics & Detection Technology, 2015, 35(12): 1227-1229,1245 doi: 10.3969/j.issn.0258-0934.2015.12.016
    [11] 闻良生, 龚频, 黄茜, 等. 小型旋翼机机载辐射环境监测系统的设计与实现[J]. 强激光与粒子束, 2016, 28:106004 doi: 10.11884/HPLPB201628.160036

    Wen Liangsheng, Gong Pin, Huang Xi, et al. Design and implementation of minitype rotorcraft airborne radiation monitoring system[J]. High Power Laser and Particle Beams, 2016, 28: 106004 doi: 10.11884/HPLPB201628.160036
    [12] 罗中兴, 李霄, 左莉, 等. 无人机载核辐射监测及气溶胶采样系统试验分析[J]. 环境监测管理与技术, 2019, 31(1):58-60 doi: 10.3969/j.issn.1006-2009.2019.01.015

    Luo Zhongxing, Li Xiao, Zuo Li, et al. Experimental study on nuclear radiation monitoring and aerosol sampling system by unmanned aerial vehicle[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1): 58-60 doi: 10.3969/j.issn.1006-2009.2019.01.015
    [13] 李新茂, 王基生, 朱波, 等. 核设施管道检测机器人系统研究[J]. 机械设计与制造, 2019(11):163-166 doi: 10.3969/j.issn.1001-3997.2019.11.041

    Li Xinmao, Wang Jisheng, Zhu Bo, et al. Research on robot system of pipeline detection in nuclear facilities[J]. Machinery Design & Manufacture, 2019(11): 163-166 doi: 10.3969/j.issn.1001-3997.2019.11.041
    [14] Alonge F, Cirrincione M, Pucci M, et al. Input-output feedback linearization control with on-line MRAS-based inductor resistance estimation of linear induction motors including the dynamic end effects[J]. IEEE Transactions on Industry Applications, 2016, 52(1): 254-266. doi: 10.1109/TIA.2015.2465939
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  48
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 修回日期:  2024-08-27
  • 录用日期:  2024-08-27
  • 网络出版日期:  2024-10-12
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回