留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于磁阻式线圈的模拟冰雹发射装置设计与仿真

贾文霄 李贞晓 弯港 石双慧

贾文霄, 李贞晓, 弯港, 等. 一种基于磁阻式线圈的模拟冰雹发射装置设计与仿真[J]. 强激光与粒子束, 2024, 36: 075002. doi: 10.11884/HPLPB202436.240091
引用本文: 贾文霄, 李贞晓, 弯港, 等. 一种基于磁阻式线圈的模拟冰雹发射装置设计与仿真[J]. 强激光与粒子束, 2024, 36: 075002. doi: 10.11884/HPLPB202436.240091
Jia Wenxiao, Li Zhenxiao, Wan Gang, et al. Design and simulation of a simulated hail launcher based on reluctance coil[J]. High Power Laser and Particle Beams, 2024, 36: 075002. doi: 10.11884/HPLPB202436.240091
Citation: Jia Wenxiao, Li Zhenxiao, Wan Gang, et al. Design and simulation of a simulated hail launcher based on reluctance coil[J]. High Power Laser and Particle Beams, 2024, 36: 075002. doi: 10.11884/HPLPB202436.240091

一种基于磁阻式线圈的模拟冰雹发射装置设计与仿真

doi: 10.11884/HPLPB202436.240091
基金项目: 国家自然科学基金青年科学基金项目(62201260)
详细信息
    作者简介:

    贾文霄,898129629@qq.com

    通讯作者:

    李贞晓,lizhxnjust@njust.edu.cn

  • 中图分类号: TM555

Design and simulation of a simulated hail launcher based on reluctance coil

  • 摘要: 基于光伏板模拟冰雹撞击试验的实际需求,开展了磁阻型线圈发射装置与脉冲功率源之间的匹配性研究。通过理论对续流前置型和续流后置型两种基本脉冲放电电路进行了适用性分析,结果表明,续流前置型脉冲放电电路与发射装置具有更优的匹配性。针对发射过程中剩余脉冲电流的反向制动问题,设计了一种可以快速消除剩余脉冲电流的泄能电路,用于改进续流前置型脉冲放电电路的拓扑结构,进一步提高其适用性,并借助仿真进行验证。结果表明,泄能电路能快速消除剩余脉冲电流的反向拉力影响,使抛体的发射性能显著提高,抛体出口速度相比传统放电电路提升50.8%,系统发射效率提高127.5%。该项研究可为磁阻式线圈发射技术应用在模拟撞击试验领域的研究提供参考。
  • 图  1  多级磁阻型线圈发射装置

    Figure  1.  Multi stage reluctance coil launcher

    图  2  基本脉冲放电电路

    Figure  2.  Basic pulse discharge circuit

    图  3  两级驱动线圈时序放电拓扑

    Figure  3.  Two-stage drive coil circuits with sequential discharge topology

    图  4  基本脉冲放电电路电流

    Figure  4.  Basic pulse discharge circuit current

    图  5  应用新型脉冲放电电路的两级磁阻型线圈发射装置

    Figure  5.  A two-stage reluctance coil launcher using new pulse discharge subcircuits

    图  6  两级磁阻型线圈发射装置仿真模型

    Figure  6.  Simulation model of two stage reluctance coil launcher

    图  7  传统脉冲放电电路仿真结果

    Figure  7.  Simulation results of traditional pulse discharge circuit

    图  8  新型脉冲放电电路仿真结果

    Figure  8.  Simulation results of new pulse discharge circuit

    图  9  两种脉冲放电电路抛体速度对比

    Figure  9.  Comparison of bullet barrel speed between two pulse discharge circuits

    表  1  磁阻型线圈发射装置参数

    Table  1.   Parameters of reluctance coil launcher

    outer radius/mm inner radius/mm total axial length coil spacing per stage number of turns parameters per turn
    44.5 18 89 11 10×18 1 mm×8 mm
    energy storage
    capacitor/mF
    capacitor precharge
    voltage/V
    capacitor internal
    resistance/mΩ
    protective
    inductor/$ {\text{μ}} $H
    inductor internal
    resistance/mΩ
    circuit-changing buffer
    capacitor/$ {\text{μ}} $F
    energy-discharge
    resistance/Ω
    1 800 2 3 3 10 10
    下载: 导出CSV

    表  2  两级磁阻型线圈发射装置开关开断时间

    Table  2.   Opening and closing time of two stage reluctance coil launcher

    switch on time/ms off time/ms
    first stage coil main discharge switch 0 4.75
    energy discharge switch 4.65
    second stage coil main discharge switch 4.75 8.40
    energy discharge switch 8.30
    下载: 导出CSV

    表  3  两种脉冲放电电路发射性能对比

    Table  3.   Comparison of launch performance between two pulse discharge circuits

    exit speed/(m·s−1) exit time/ms initial energy storage/J export kinetic energy/J launching efficiency/%
    conventional discharge circuit 22.00 10.28 640.00 12.10 1.89
    new discharge circuit 33.18 9.38 640.00 27.52 4.30
    下载: 导出CSV
  • [1] 戴益民, 李怿歆, 徐瑛, 等. 基于GA-BP神经网络的风雹耦合所致冰雹冲击力预测[J/OL]. 工程力学, 1-10. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.06.0449?viewType=HTML

    Dai Yimin, Li Yixin, Xu Ying, et al. Prediction of hail impact force induced by wind-hail coupling based on GA-BP neural network[J/OL]. Engineering Mechanics, 1-10. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2023.06.0449?viewType=HTML.
    [2] 闫文哲, 李强, 曲普, 等. 气体炮内弹道建模与实验研究[J]. 火炮发射与控制学报, 2021, 42(4):87-90,96

    Yan Wenzhe, Li Qiang, Qu Pu, et al. Interior ballistic modeling and experimental study of gas gun[J]. Journal of Gun Launch & Control, 2021, 42(4): 87-90,96
    [3] 孟学平, 雷彬, 李治源, 等. 驱动线圈结构参数对磁阻发射器发射性能的影响[J]. 磁性材料及器件, 2014, 45(2):32-35,48 doi: 10.3969/j.issn.1001-3830.2014.02.008

    Meng Xueping, Lei Bin, Li Zhiyuan, et al. Influence of structure parameters of driving coil on the properties of reluctance launcher[J]. Journal of Magnetic Materials and Devices, 2014, 45(2): 32-35,48 doi: 10.3969/j.issn.1001-3830.2014.02.008
    [4] 赵嘉琦, 李海涛, 吴亚楠, 等. 基于桥式驱动电路的磁阻型电磁发射器仿真与实验[J]. 高电压技术, 2024, 50(3):1348-1355

    Zhao Jiaqi, Li Haitao, Wu Yanan, et al. Simulation and experiment of reluctance electromagnetic launcher based on bridge drive circuit[J]. High Voltage Engineering, 2024, 50(3): 1348-1355
    [5] Deng Huimin, Wang Yu, Lu Falong, et al. Optimization of reluctance accelerator efficiency by an improved discharging circuit[J]. Defence Technology, 2020, 16(3): 662-667. doi: 10.1016/j.dt.2019.08.013
    [6] Yu Xinjie, Liu Xukun. Review of the meat grinder circuits for railguns[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1086-1094. doi: 10.1109/TPS.2017.2705164
    [7] Liebfried O, Brommer V, Scharnholz S. Development of XRAM generators as inductive power sources for very high current pulses[C]//2013 Abstracts IEEE International Conference on Plasma Science. 2013: 1.
    [8] 王杰, 鲁军勇, 张晓, 等. 两型PFN模块的放电特性及优化[J]. 电机与控制学报, 2019, 23(8):10-18,27

    Wang Jie, Lu Junyong, Zhang Xiao, et al. Discharge characteristics and optimization of two types of PFN modules[J]. Electric Machines and Control, 2019, 23(8): 10-18,27
    [9] 李振超, 金超亮, 戴玲, 等. 拉开时序下脉冲成形网络中半导体器件的击穿与保护[J]. 兵工学报, 2017, 38(12):2348-2353 doi: 10.3969/j.issn.1000-1093.2017.12.007

    Li Zhenchao, Jin Chaoliang, Dai Ling, et al. Breakdown and protection of semiconductor device in a sequentially fired pulse forming network[J]. Acta Armamentarii, 2017, 38(12): 2348-2353 doi: 10.3969/j.issn.1000-1093.2017.12.007
    [10] Zhao Keyi, Xiang Hongjun, Li Zhiyuan, et al. Optimum design of driving circuit parameters for magnetic-resistance coil launcher[C]//17th International Symposium on Electromagnetic Launch Technology. 2014: 1-5.
    [11] Rivas-Camacho J L, Ponce-Silva M, Olivares-Peregrino V H. Experimental results concerning to the effects of the initial position of the projectile on the conversion efficiency of a reluctance accelerator[C]//13th International Conference on Power Electronics. 2016: 92-97.
    [12] Kim J, Ahn J. Modeling and optimization of a reluctance accelerator using DOE-based response surface methodology[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1321-1330. doi: 10.1007/s12206-017-0231-0
    [13] Slade G W. A simple unified physical model for a reluctance accelerator[J]. IEEE Transactions on Magnetics, 2005, 41(11): 4270-4276. doi: 10.1109/TMAG.2005.856320
    [14] 鲁军勇, 杜佩佩, 冯军红, 等. 电磁轨道发射器临界速度仿真研究[J]. 中国电机工程学报, 2019, 39(7):1862-1869

    Lu Junyong, Du Peipei, Feng Junhong, et al. Simulation study on critical velocity of electromagnetic rail launcher[J]. Proceedings of the CSEE, 2019, 39(7): 1862-1869
    [15] Liang Chunyan, Xiang Hongjun, Yuan Xichao, et al. Reverse force suppression method of reluctance coil launcher based on consumption resistor[J]. IEEE Access, 2021, 9: 62770-62778. doi: 10.1109/ACCESS.2021.3073905
    [16] 井保密, 廖同庆, 蒋铁珍, 等. 多级磁阻型电磁发射器的动态特性研究[J]. 南开大学学报(自然科学版), 2019, 52(3):55-59

    Jing Baomi, Liao Tongqing, Jiang Tiezhen, et al. Dynamic research on multi-stage reluctance electromagnetic launcher[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 2019, 52(3): 55-59
    [17] 刘洋. 线圈型发射装置建模及影响因素分析[D]. 武汉: 华中科技大学, 2020

    Liu Yang. Modeling of coil type electromagnetic launcher and analysis of influencing factors[D]. Wuhan: Huazhong University of Science and Technology, 2020
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  73
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-05-22
  • 录用日期:  2024-05-22
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回