留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光惯性约束聚变堆包层能量沉积特性

李昕泽 张冰倩 陈荣华 张魁 张大林 田文喜 秋穗正 苏光辉

李昕泽, 张冰倩, 陈荣华, 等. 激光惯性约束聚变堆包层能量沉积特性[J]. 强激光与粒子束, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098
引用本文: 李昕泽, 张冰倩, 陈荣华, 等. 激光惯性约束聚变堆包层能量沉积特性[J]. 强激光与粒子束, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098
Li Xinze, Zhang Bingqian, Chen Ronghua, et al. Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor[J]. High Power Laser and Particle Beams, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098
Citation: Li Xinze, Zhang Bingqian, Chen Ronghua, et al. Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor[J]. High Power Laser and Particle Beams, 2024, 36: 082001. doi: 10.11884/HPLPB202436.240098

激光惯性约束聚变堆包层能量沉积特性

doi: 10.11884/HPLPB202436.240098
详细信息
    作者简介:

    李昕泽,lxz159753@stu.xjtu.edu.cn

    通讯作者:

    陈荣华,rhchen@mail.xjtu.edu.cn

  • 中图分类号: TL645

Energy deposition characteristics of tritium breeding blanket in laser inertial confinement fusion reactor

  • 摘要: 参考国内外聚变堆技术,建立了一种200 MW激光惯性约束聚变堆包层概念设计,包层采用超临界二氧化碳和锂铅双冷结构。研究构建了瞬态和稳态耦合模型计算包层温度分布及变化。靶丸内爆反应使用MULTI-IFE进行计算,核热耦合部分基于蒙特卡罗程序OpenMC和自编程换热模型对包层模型结构、冷却和产氚进行计算。研究结果表明,核热耦合模型能够完成对包层的初步计算分析,周期性的瞬态载荷会引起第一壁面温度的振荡,但包层内部的温度最终会收敛到稳态计算结果。堆腔尺寸对于降低温度以及震荡效果明显,但仍需氙展平辐射功率峰。包层产氚和能量导出同时受到堆腔尺寸和增殖区的影响,在200 MW工况下,3 m半径和0.25 m增殖区尺寸计算结果最能满足需求。
  • 图  1  包层模型

    Figure  1.  Blanket model

    图  2  流道布置

    Figure  2.  Arrangement of cooling channels

    图  3  内爆迹线图

    Figure  3.  Implosion trajectories

    图  4  X射线辐射输出

    Figure  4.  X-ray radiation

    图  5  归一化D-T反应率

    Figure  5.  Normalized D-T reaction rate

    图  6  反应率分区

    Figure  6.  Reaction rate zone

    图  7  计算模型

    Figure  7.  Model for calculation

    图  8  迭代流程

    Figure  8.  Iterative process

    图  9  瞬态加载方案

    Figure  9.  Transient loading scheme

    图  10  温度记录点

    Figure  10.  Temperature recording node

    图  11  温度计算结果

    Figure  11.  Temperature calculation results

    图  12  节点温度

    Figure  12.  Node temperature

    表  1  沉积热偏差

    Table  1.   Deposition heat deviation

    No. ratio of reaction numbers/% error/%
    1 1.4 0.75
    2 24.4 −0.38
    3 2.9 0.61
    下载: 导出CSV

    表  2  PbLi物性参数

    Table  2.   PbLi properties

    parameter unit temperature dependent correlation equations
    ρ kg·m−3 $\rho = 10\;520.0 - 1.189T$
    cp J·kg−1·K−1 ${c_p} = 194.74 - 9.0 \times {10^{ - 3}}T$
    h J·kg−1 $h = 194.74\left( {T - {T_{\text{m}}}} \right) - 4.5 \times {10^{ - 3}}\left( {{T^2} - T_{\text{m}}^{\text{2}}} \right)$
    λ W·m−1·K−1 $\lambda = 1.9463 + 1.96 \times {10^{ - 2}}T$
    μ Pa·s $ \; \mu =0.009\;14-1.774\;59\times {10}^{-5} T+9.552\;1\times {10}^{-9} {T}^{2} $
    下载: 导出CSV

    表  3  震荡后节点温度

    Table  3.   Node temperatures after fluctuation (℃)

    No.transient state temperaturesteady state temperaturetransient state temperature with xenon
    3 m4 m5 m3 m4 m5 m3 m
    1683.23571.49516.61682.97566.57513.72683.61
    2674.44566.84513.62670.23559.69509.31671.41
    3601.31527.63488.72598.03520.35484.33600.70
    4448.40439.50437.88448.83440.62436.79448.87
    5456.10445.15443.25456.59446.78442.20456.24
    6437.26437.36436.73437.28435.90435.23437.18
    7432.66432.89432.36432.68431.53430.96432.60
    8432.50432.80432.30432.51431.43430.90432.53
    9437.07437.25436.66437.08435.78435.15437.10
    10434.68435.79435.70434.41434.23434.13434.07
    11430.50431.57431.50430.28430.13430.05430.66
    12430.48431.56431.49430.26430.11430.04430.65
    13434.66435.78435.69434.39434.21434.12434.06
    14434.30435.55435.55433.99433.97433.96434.91
    15430.18431.37431.36429.93429.91429.91430.52
    16421.47422.24422.24420.03420.02420.01421.21
    17421.78422.68422.68420.03420.02420.01421.94
    下载: 导出CSV

    表  4  耦合模型对比结果

    Table  4.   Comparison results of coupled models

    radius of
    vessel/m
    size of breeding
    zone/m
    tritium breeding
    ratio
    PbLi energy export
    proportion/%
    S-CO2 mass flow
    rate/(kg/s)
    PbLi mass flow
    rate/(kg/s)
    30.151.289645.83514.40/6.27/2.15
    0.201.491675.71717.40/6.09/1.74
    0.251.596695.63519.70/5.50/1.30
    40.151.297596.81913.30/5.66/1.84
    0.201.496616.77814.10/5.47/1.46
    0.251.599626.73218.20/4.90/1.05
    50.151.301498.46911.30/4.64/1.36
    0.201.499518.56413.70/4.47/1.03
    0.251.600528.58415.60/3.97/0.67
    下载: 导出CSV
  • [1] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 原子能科学技术, 1988(1):7-12

    Wang Ganchang. A proposal of using high energy and high power laser to produce neutrons[J]. Atomic Energy Science and Technology, 1988(1): 7-12
    [2] 郑万国, 齐红基. 人类首次实现聚变“点火”, 激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1):1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001

    Zheng Wanguo, Qi Hongji. An exclusive interview with ZHENG Wanguo on the “Ignition” milestone in human history[J]. Journal of Synthetic Crystals, 2023, 52(1): 1-7 doi: 10.3969/j.issn.1000-985X.2023.01.001
    [3] Meier W R, Dunne A M, Kramer K J, et al. Fusion technology aspects of laser inertial fusion energy (LIFE)[J]. Fusion Engineering and Design, 2014, 89(9/10): 2489-2492.
    [4] Páramo A R, Sordo F, Garoz D, et al. Transmission final lenses in the HiPER laser fusion power plant: system design for temperature control[J]. Nuclear Fusion, 2014, 54: 123019. doi: 10.1088/0029-5515/54/12/123019
    [5] 盛倩, 吴姝琴, 王晓宇, 等. 中国氦冷固态增殖剂实验包层模块材料研究进展[J]. 原子能科学技术, 2022, 56(7):1402-1412 doi: 10.7538/yzk.2022.youxian.0104

    Sheng Qian, Wu Shuqin, Wang Xiaoyu, et al. Research progress on material of helium cooled ceramic breeder test blanket module in China[J]. Atomic Energy Science and Technology, 2022, 56(7): 1402-1412 doi: 10.7538/yzk.2022.youxian.0104
    [6] Zhang Dalin, Liu Limin, Liu Minghao, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. doi: 10.1002/er.3979
    [7] Chen Lei, Jiang Kecheng, Ma Xuebin, et al. Conceptual design of the supercritical CO2 cooled lithium lead blanket for CFETR[J]. Fusion Engineering and Design, 2021, 173: 112800. doi: 10.1016/j.fusengdes.2021.112800
    [8] Miura S, Nakamura K, Akahoshi E, et al. Lithium-lead corrosion behavior of zirconium oxide coating after heavy-ion irradiation[J]. Fusion Engineering and Design, 2021, 170: 112536. doi: 10.1016/j.fusengdes.2021.112536
    [9] 严兵. 纳米ZrO2热障涂层隔热性能研究[J]. 战术导弹技术, 2014(3):95-98

    Yan Bing. Research on heat-insulating property of nano-zirconia thermal barrier coatings[J]. Tactical Missile Technology, 2014(3): 95-98
    [10] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 2016, 203: 226-237. doi: 10.1016/j.cpc.2016.02.014
    [11] Sacks R, Moses G, Tang V, et al. Parameter study of an inertial fusion energy chamber response using the 1-D BUCKY radiation hydrodynamics code[J]. Fusion Science and Technology, 2014, 66(2): 349-357. doi: 10.13182/FST14-789
    [12] 戴涛, 曹良志, 贺清明, 等. 中国聚变工程试验堆包层的核热耦合效应研究[J]. 原子能科学技术, 2022, 56(1):136-145 doi: 10.7538/yzk.2021.youxian.0519

    Dai Tao, Cao Liangzhi, He Qingming, et al. Research on neutronics/thermal-hydraulics coupling effect of CFETR blanket[J]. Atomic Energy Science and Technology, 2022, 56(1): 136-145 doi: 10.7538/yzk.2021.youxian.0519
    [13] Cao Qixiang, Wang Xiaoyu, Wu Xinghua, et al. Neutronics and shielding design of CFETR HCCB blanket[J]. Fusion Engineering and Design, 2021, 172: 112918. doi: 10.1016/j.fusengdes.2021.112918
    [14] 李铸伦, 谢金森, 徐士坤, 等. 基于OpenMC的瞬发中子衰减常数计算模块开发与验证[J]. 原子能科学技术, 2022, 56(9):1906-1914 doi: 10.7538/yzk.2021.youxian.0667

    Li Zhulun, Xie Jinsen, Xu Shikun, et al. Development and verification of calculation module for prompt neutron attenuation constant based on OpenMC[J]. Atomic Energy Science and Technology, 2022, 56(9): 1906-1914 doi: 10.7538/yzk.2021.youxian.0667
    [15] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368.
    [16] Churchill S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24): 91-92.
    [17] Liu Limin, Zhang Dalin, Song Jian, et al. Modification and application of Relap5 Mod3 code to several types of nonwater-cooled advanced nuclear reactors[J]. International Journal of Energy Research, 2018, 42(1): 221-235. doi: 10.1002/er.3949
    [18] National Institute of Standards and Technology. NIST Chemistry WebBook: NIST Standard Reference Database Number 69[DB]. 2023.
    [19] Wang Wenjia, Cheng Xiaoman, Yu Yi, et al. Implementation of CO2 and PbLi as working fluids in RELAP5/MOD3.3 towards accident analysis of COOL blanket for CFETR[J]. Fusion Engineering and Design, 2022, 184: 113301. doi: 10.1016/j.fusengdes.2022.113301
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  89
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 修回日期:  2024-06-06
  • 录用日期:  2024-06-06
  • 网络出版日期:  2024-06-13
  • 刊出日期:  2024-07-04

目录

    /

    返回文章
    返回