Neutron spectrum unfolding based on the detection of Bonner multi-sphere spectrometer
-
摘要: 在中子辐射领域,中子解谱问题备受关注。邦纳多球谱仪常用于中子能谱探测,最大熵法可针对多球谱仪探测数据进行中子解谱。基于此原理,建立包含邦纳多球谱仪的仿真模型,以蒙特卡罗方法的模拟结果作为先验谱,使用基于最大熵原理的最大熵反卷积(MAXED)方法进行中子解谱,结果证明了方法的有效性和准确性。通过增加蒙特卡罗方法的随机粒子数,获得了精确度不同的多组先验谱,对于不同的先验谱,最终解谱结果均可获得统计学显著性,解谱结果有效。经过对比,先验谱越精准,最终解谱结果准确度越高,说明通过合适的降方差方法获得准确的蒙特卡罗计算结果至关重要,可为后续研究和实验提供参考。同步使用了基于迭代算法的GRAVEL方法进行中子解谱,两种解谱方法计算结果对比进一步证明了MAXED方法解谱的优越性能。Abstract: In the field of neutron radiation, the problem of neutron spectrum unfolding has attracted much attention. The Bonner sphere spectrometer is often used for neutron spectrum detection, and the maximum entropy method can be used to analyze the neutron spectrum of the Bonner sphere spectrometer. Based on this principle, this paper establishes a simulation model including the Bonner sphere spectrometer with reference to the neutron shielding experiment in 2014. The simulation results of Monte Carlo method are used as the prior spectrum, and the maximum entropy deconvolution code (MAXED) based on the principle of maximum entropy is used for neutron spectrum unfolding. The effectiveness and accuracy of the method are verified by comparing with the literature data. By increasing the number of random particles in Monte Carlo method, multiple groups of prior spectrum with different accuracy are obtained. For different prior spectrum, the final spectral solution results can be statistically significant and the spectral solution results are effective. After comparison, the more accurate the prior spectrum is, the higher the accuracy of the final spectral solution results, indicating that it is important to obtain accurate Monte Carlo calculation results through appropriate variance reduction method, which can provide reference for subsequent research and experiments. In this paper, the GRAVEL method based on iterative algorithm is used to solve the neutron spectrum simultaneously, and the comparison of the calculation results of the two methods further proves the superior performance of the solution spectrum of the MAXED method.
-
Key words:
- neutron detector /
- neutron spectrum unfolding /
- maximum entropy method /
- prior spectrum
-
表 1 材料元素构成
Table 1. Composition of material elements
name density/(g/cm3) element (weight fraction) concrete 2.30 H(2.2%), C(0.3%), O(57.5%), Na(1.5%), Mg(0.1%), Al(2%), Si(30.5%), K(1%), Ca(4.3%), Fe(0.6%) polythene 0.95 C(86%), H(14%) Al shell 2.70 Al(100%) LiI scintillator 3.84 6Li(5%), I(95%) air 1.20×10−3 C(0.01%), N(76.52%), O(23.47%) 表 2 不同随机粒子数情况下可信结果占比
Table 2. The proportion of reliable results under different random particle numbers
random particle population percentage of credible results/% 2.2×107 34.92 2.2×108 52.38 3.0×108 55.56 5.0×108 60.32 1.0×109 74.60 表 3 不同迭代次数情况下GRAVEL解谱结果χ2-PDF值
Table 3. χ2-PDF values of GRAVEL solution results under different iterations
iterations χ2-PDF 50 1.34 100 1.18 150 1.08 207 0.99 -
[1] 范启蒙, 吕宁, 过惠平, 等. 基于多球中子谱仪的解谱算法研究现状[J]. 现代应用物理, 2023, 14(3):94-100Fan Qimeng, Lü Ning, Guo Huiping, et al. Status and progress of unfolding algorithms for neutron spectrum based on multishpere neutron spectrometer[J]. Modern Applied Physics, 2023, 14(3): 94-100 [2] Lim S, Kim D, Kang J G, et al. Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target[J]. Nuclear Engineering and Technology, 2022, 54(2): 437-441. doi: 10.1016/j.net.2021.03.030 [3] 孙博文, 代文翰, 张辉, 等. 241Am-Be强中子源刻度多球中子谱仪[J]. 核电子学与探测技术, 2022, 42(6):1063-1067Sun Bowen, Dai Wenhan, Zhang Hui, et al. Calibration of a Bonner sphere spectrometer using strong 24 Am-Be source[J]. Nuclear Electronics & Detection Technology, 2022, 42(6): 1063-1067 [4] 谢树青, 安宁, 吴磊, 等. 中子周围剂量当量率测量技术的发展与现状[J]. 核安全, 2020, 19(4):83-87Xie Shuqing, An Ning, Wu Lei, et al. Development and status of the measurement technology of neutron peripheral dose equivalent rate[J]. Nuclear Safety, 2020, 19(4): 83-87 [5] 吴光华, 吴黄鑫, 顾龙, 等. 多箔活化法测量BNCT中子束能谱模拟研究[J]. 原子能科学技术, 2023, 57(9):1817-1826 doi: 10.7538/yzk.2023.youxian.0001Wu Guanghua, Wu Huangxin, Gu Long, et al. Simulation study on energy spectrum determination of BNCT neutron beam with multi-foil activation method[J]. Atomic Energy Science and Technology, 2023, 57(9): 1817-1826 doi: 10.7538/yzk.2023.youxian.0001 [6] 熊厚华, 陈思泽, 王永峰, 等. 基于氘氚聚变中子源的双功能锂铅包层(DFLL-TBM)模型中子学实验[J]. 核科学与工程, 2018, 38(1):75-80 doi: 10.3969/j.issn.0258-0918.2018.01.011Xiong Houhua, Chen Size, Wang Yongfeng, et al. Neutronics experiment on DFLL-TBM mock-up irradiated with D-T fusion neutrons[J]. Nuclear Science and Engineering, 2018, 38(1): 75-80 doi: 10.3969/j.issn.0258-0918.2018.01.011 [7] 杨旭. 中子能谱反演算法及紧凑型D-D中子发生器中子学特性测量研究[D]. 兰州: 兰州大学, 2023Yang Xu. Research on inversion algorithm of neutron energy spectrum and measurement of neutron characteristics of compact D-D neutron generator[D]. Lanzhou: Lanzhou University, 2023 [8] Mares V, Schraube H. Evaluation of the response matrix of a Bonner sphere spectrometer with LiI detector from thermal energy to 100 MeV[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 337(2/3): 461-473. [9] 李崇伟. 基于多球谱仪的252Cf中子辐射场能谱及注量测量方法研究[D]. 北京: 军事科学院, 2023Li Chongwei. Research on measurement method of 252Cf neutron radiation field energy spectrum and fluence based on multi-sphere spectrometer[D]. Beijing: Academy of Military Sciences, 2023 [10] 黄迁明, 刘斌, 陆婷, 等. 中子能谱测量中的解谱技术研究进展[J]. 辐射防护, 2022, 42(4):265-279 doi: 10.3969/j.issn.1000-8187.2022.4.fsfh202204001Huang Qianming, Liu Bin, Lu Ting, et al. Progress in research of spectrum unfolding method on neutron spectrum measurement[J]. Radiation Protection, 2022, 42(4): 265-279 doi: 10.3969/j.issn.1000-8187.2022.4.fsfh202204001 [11] 郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学, 2021Zheng Yu. Research and application of Monte Carlo variance reduction method[D]. Hefei: University of Science and Technology of China, 2021 [12] Green T, Biegalski S, O’Kelly S, et al. Neutron energy spectrum determination and flux measurement using MAXED, GRAVEL, and MCNP for RACE experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(1): 279-284. doi: 10.1007/s10967-007-0446-0 [13] Reginatto M, Goldhagen P. MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data[J]. Health Physics, 1999, 77(5): 579-583. doi: 10.1097/00004032-199911000-00012 [14] Giacomelli L, Reginatto M, JET EFDA Contributors. Optimization of MAXED input parameters with applications to the unfolding of neutron diagnostics data from the Joint European Torus[J]. Review of Scientific Instruments, 2019, 90: 093505. doi: 10.1063/1.5097784 [15] Decker A W. Verification and validation of Monte Carlo N-particle code 6 (MCNP6) with neutron protection factor measurements of an iron box[D]. 2014: 252-259. [16] 李会, 唐智辉, 闫学文, 等. Geant4用于模拟现场中子谱慢化材料选型适用性研究[J]. 核电子学与探测技术, 2023, 43(3):506-512 doi: 10.3969/j.issn.0258-0934.2023.03.011Li Hui, Tang Zhihui, Yan Xuewen, et al. Study on the suitability of Geant4 for the selection of moderation material used to simulated workplace neutron spectrum[J]. Nuclear Electronics & Detection Technology, 2023, 43(3): 506-512 doi: 10.3969/j.issn.0258-0934.2023.03.011 [17] Griffith R V, Palfalvi J, Madhvanath U. Compendium of neutron spectra and detector responses for radiation protection purposes[R]. Vienna: International Atomic Energy Agency, 2001: 97.