留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

武汉光源脉冲的非线性冲击磁铁设计研究

刘媛 朱兵 雷健 杨军 樊宽军 陈沅

刘媛, 朱兵, 雷健, 等. 武汉光源脉冲的非线性冲击磁铁设计研究[J]. 强激光与粒子束, 2024, 36: 124002. doi: 10.11884/HPLPB202436.240205
引用本文: 刘媛, 朱兵, 雷健, 等. 武汉光源脉冲的非线性冲击磁铁设计研究[J]. 强激光与粒子束, 2024, 36: 124002. doi: 10.11884/HPLPB202436.240205
Liu Yuan, Zhu Bing, Lei Jian, et al. Design of pulsed nonlinear kicker magnet for Wuhan light source[J]. High Power Laser and Particle Beams, 2024, 36: 124002. doi: 10.11884/HPLPB202436.240205
Citation: Liu Yuan, Zhu Bing, Lei Jian, et al. Design of pulsed nonlinear kicker magnet for Wuhan light source[J]. High Power Laser and Particle Beams, 2024, 36: 124002. doi: 10.11884/HPLPB202436.240205

武汉光源脉冲的非线性冲击磁铁设计研究

doi: 10.11884/HPLPB202436.240205
基金项目: 国家重点研发计划项目(2022YFA1602202)
详细信息
    作者简介:

    刘 媛,m202372454@hust.edu.cn

    通讯作者:

    杨 军,jyang@hust.edu.cn

  • 中图分类号: TL503

Design of pulsed nonlinear kicker magnet for Wuhan light source

  • 摘要: 近年来,基于非线性冲击磁铁的离轴注入方案逐渐成为一种新兴的研究方向, 尤其适用于动力学孔径较小的储存环。该方案的特点是磁场在注入束流位置有较大值在中心轨道处接近零,显著降低了脉冲磁场对储存束流的扰动。设计了一种基于八导线布局的非线性冲击磁铁,重点研究了一些关键参数对磁场性能的影响,包括导线布局、磁铁端部边缘场、陶瓷真空镀膜等,并相应地综合优化了这些关键参数。结果表明所设计的非线性冲击磁铁能够满足在研的高亮度正负电子对撞环和高亮度同步辐射环的注入系统要求。
  • 图  1  利用非线性冲击磁铁进行离轴注入过程的相空间示意图

    Figure  1.  Phase space schematic diagram of off-axis injection process using pulsed nonlinear magnet

    图  2  导线简化平面图

    Figure  2.  Conductor’s simplified floor plan

    图  3  理论曲线、OPERA-2D、OPERA-3D仿真磁场对比分析图

    Figure  3.  Magnetic field comparative analysis of theoretical curves,OPERA-2D and OPERA-3D simulation curves

    图  4  非线性冲击磁铁完整结构示意图

    Figure  4.  Schematic diagram of complete structure and interal connection of pulsed nonlinear magnet

    图  5  磁场By沿纵向分布

    Figure  5.  Magnetic field By is distributed longitudinally

    图  6  非线性冲击磁铁完整模型磁场By的三维分布

    Figure  6.  Three-dimensional distribution of the magnetic field By in the complete model of a pulsed nonlinear magnet

    图  7  积分场分布

    Figure  7.  Distribution of integral field

    图  8  不同厚度模型注入点磁场时域图

    Figure  8.  Time-domain plot of magnetic field at injection point in different thickness models

    图  9  不同镀膜厚度下注入点磁场时域图

    Figure  9.  Time domain diagram of the magnetic field of the injection point under different coating thicknesses

    图  10  不同Ti镀膜厚度中心无场区分布图

    Figure  10.  Distribution of fieldless area in the center of different Ti coating thicknesses

    图  11  1 μm Ti 镀膜的脉冲非线性磁铁热功率时域图像

    Figure  11.  Time-domain image of the thermal power of a coated pulsed nonlinear magnet with 1 μm Ti coating

    图  12  完整镀膜模型与条形镀层模型在注入点的磁场强度时域图像

    Figure  12.  Time-domain images of the magnetic field strength of the full coating model and the strip coating model at the injection point

    图  13  不同尾场长度下的结果

    Figure  13.  Simulation results at different wake lengths

    图  14  非线性冲击磁铁的束流耦合阻抗对比分析

    Figure  14.  Comparison of beam coupling impedances of pulsed nonlinear magnet

    图  15  非线性冲击磁铁热损耗

    Figure  15.  Heat loss of pulsed nonlinear magnet

    表  1  脉冲非线性磁铁设计参数

    Table  1.   Pulsed nonlinear magnet design parameters

    vertical
    gap/mm
    length/
    mm
    material wire
    diameter/mm
    inner traverse center
    coordinates/mm
    outer traverse center
    coordinates/mm
    magnetic
    inductance/μH
    max. peak
    current/A
    max. charging
    voltage/kV
    10 500 oxygen-free copper 2 (7,8)±0.04 (9.5,13)±0.04 1.1 5355 20.2
    下载: 导出CSV

    表  2  不同Ti镀膜厚度在注入点x0=−5 mm的参数

    Table  2.   Parameters with different Ti coating thicknesses at the injection point x0=−5 mm

    coating thickness/μm peak moment/μs peak magnetic field/T peak integration field/(T·m)
    0 0.5 0.0296 0.0148
    1 0.54 0.0291 0.0145
    5 0.63 0.0268 0.0134
    10 0.72 0.0251 0.0126
    50 1.13 0.0159 0.0080
    下载: 导出CSV

    表  3  不同间隙下非线性冲击磁铁注入点磁场强度、中心区平坦度

    Table  3.   Magnetic field strength and flatness of the central region at the injection point under different gaps

    gap spacing/mm peak moment/μs peak magnetic field/T maximum magnetic field/mT
    1 0.53 0.0293 0.0056
    2 0.53 0.0290 0.2120
    3 0.52 0.0294 0.1470
    4 0.51 0.0292 0.0093
    下载: 导出CSV
  • [1] Aiba M, Böge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Accelerators and Beams, 2015, 18: 020701. doi: 10.1103/PhysRevSTAB.18.020701
    [2] Atkinson T, Dirsat M, Dressler O, et al. Development of a non-linear kicker system to facilitate a new injection scheme for the BESSY II storage ring[C]//Proceedings of the IPAC2011. 2011.
    [3] Ollier R, Alexandre P, El Fekih R B, et al. Toward transparent injection with a multipole injection kicker in a storage ring[J]. Physical Review Accelerators and Beams, 2023, 26: 020101. doi: 10.1103/PhysRevAccelBeams.26.020101
    [4] Yamamoto N, Hosaka M, Takano T, et al. Design study of pulsed multipole injection for Aichi SR[C]//Proceedings of IPAC2014. 2014: 1962.
    [5] White S, Dubrulle M, Farvacque L, et al. Non-linear kickers using eddy current screens and application to the ESRF[C]//Proceedings of the IPAC2017. 2017.
    [6] Pulampong T, Bartolini R. A non-linear injection kicker for diamond light source[C]//Proceedings of IPAC2013. 2013: 2268-2270.
    [7] Ollier R, Alexandre P, Ben El Fekih R, et al. Design and commissioning of a multipole injection kicker for the SOLEIL storage ring[C]//Proceedings of the IPAC’21. 2021: 3525-3528.
    [8] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [9] Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 407-409.
    [10] 宋文彬, 尚雷, 尚风雷, 等. 合肥先进光源注入非线性冲击磁铁设计研究[J]. 核技术, 2021, 44(6):35-40 doi: 10.11889/j.0253-3219.2021.hjs.44.060202

    Song Wenbin, Shang Lei, Shang Fenglei, et al. Nonlinear kicker design and research for Hefei advanced light facility[J]. Nuclear Techniques, 2021, 44(6): 35-40 doi: 10.11889/j.0253-3219.2021.hjs.44.060202
    [11] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [12] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137

    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
    [13] Kwiatkowski S, Baptiste K, Barry W, et al. “Camshaft” bunch kicker design for the ALS storage ring[C]//Proceedings of EPAC 2006. 2006.
    [14] Liu Yongfang, Wang Ruiping, Tong Jin, et al. Development of a high-repetition-rate lumped-inductance kicker magnet prototype for the beam switchyard of SHINE[J]. Nuclear Science and Techniques, 2024, 35: 37. doi: 10.1007/s41365-024-01390-9
    [15] 徐宏亮, 王琳, 刘金英, 等. 合肥电子储存环上新旧高频腔的尾场及耦合阻抗的计算[J]. 强激光与粒子束, 2003, 15(2):187-190

    Xu Hongliang, Wang Lin, Liu Jinying, et al. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring[J]. High Power Laser and Particle Beams, 2003, 15(2): 187-190
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  41
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-10-24
  • 录用日期:  2024-10-24
  • 网络出版日期:  2024-11-09
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回