Design of pulsed nonlinear kicker magnet for Wuhan light source
-
摘要: 近年来,基于非线性冲击磁铁的离轴注入方案逐渐成为一种新兴的研究方向, 尤其适用于动力学孔径较小的储存环。该方案的特点是磁场在注入束流位置有较大值在中心轨道处接近零,显著降低了脉冲磁场对储存束流的扰动。设计了一种基于八导线布局的非线性冲击磁铁,重点研究了一些关键参数对磁场性能的影响,包括导线布局、磁铁端部边缘场、陶瓷真空镀膜等,并相应地综合优化了这些关键参数。结果表明所设计的非线性冲击磁铁能够满足在研的高亮度正负电子对撞环和高亮度同步辐射环的注入系统要求。Abstract: In recent years, off-axis injection schemes based on nonlinear kicker magnets have emerged as a new research focus, particularly suitable for storage rings with small dynamic apertures. This scheme is characterized by a strong magnetic field generated by the nonlinear kicker magnet at the injection point to deflect the injected beam, while maintaining a near-zero magnetic field near the central orbit, significantly reducing interference with the stored beam. This paper presents the design of a nonlinear kicker magnet with an eight-conductor layout, conducting an in-depth study on the impact of key parameters—such as conductor layout, edge fields at the magnet ends, and ceramic vacuum coatings—on magnetic field performance, followed by optimization of these parameters. Results indicate that this nonlinear kicker magnet design meets the injection system requirements for the high-brightness electron-positron collider and synchrotron radiation ring under development.
-
Key words:
- off-axis injection /
- nonlinear kicker magnet /
- coating /
- beam coupling impedance /
- vortex effect
-
表 1 脉冲非线性磁铁设计参数
Table 1. Pulsed nonlinear magnet design parameters
vertical
gap/mmlength/
mmmaterial wire
diameter/mminner traverse center
coordinates/mmouter traverse center
coordinates/mmmagnetic
inductance/μHmax. peak
current/Amax. charging
voltage/kV10 500 oxygen-free copper 2 (7,8)±0.04 (9.5,13)±0.04 1.1 5355 20.2 表 2 不同Ti镀膜厚度在注入点x0=−5 mm的参数
Table 2. Parameters with different Ti coating thicknesses at the injection point x0=−5 mm
coating thickness/μm peak moment/μs peak magnetic field/T peak integration field/(T·m) 0 0.5 0.0296 0.0148 1 0.54 0.0291 0.0145 5 0.63 0.0268 0.0134 10 0.72 0.0251 0.0126 50 1.13 0.0159 0.0080 表 3 不同间隙下非线性冲击磁铁注入点磁场强度、中心区平坦度
Table 3. Magnetic field strength and flatness of the central region at the injection point under different gaps
gap spacing/mm peak moment/μs peak magnetic field/T maximum magnetic field/mT 1 0.53 0.0293 0.0056 2 0.53 0.0290 0.2120 3 0.52 0.0294 0.1470 4 0.51 0.0292 0.0093 -
[1] Aiba M, Böge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Accelerators and Beams, 2015, 18: 020701. doi: 10.1103/PhysRevSTAB.18.020701 [2] Atkinson T, Dirsat M, Dressler O, et al. Development of a non-linear kicker system to facilitate a new injection scheme for the BESSY II storage ring[C]//Proceedings of the IPAC2011. 2011. [3] Ollier R, Alexandre P, El Fekih R B, et al. Toward transparent injection with a multipole injection kicker in a storage ring[J]. Physical Review Accelerators and Beams, 2023, 26: 020101. doi: 10.1103/PhysRevAccelBeams.26.020101 [4] Yamamoto N, Hosaka M, Takano T, et al. Design study of pulsed multipole injection for Aichi SR[C]//Proceedings of IPAC2014. 2014: 1962. [5] White S, Dubrulle M, Farvacque L, et al. Non-linear kickers using eddy current screens and application to the ESRF[C]//Proceedings of the IPAC2017. 2017. [6] Pulampong T, Bartolini R. A non-linear injection kicker for diamond light source[C]//Proceedings of IPAC2013. 2013: 2268-2270. [7] Ollier R, Alexandre P, Ben El Fekih R, et al. Design and commissioning of a multipole injection kicker for the SOLEIL storage ring[C]//Proceedings of the IPAC’21. 2021: 3525-3528. [8] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110 [9] Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//Proceedings of the 12th International Particle Accelerator Conference. 2021: 407-409. [10] 宋文彬, 尚雷, 尚风雷, 等. 合肥先进光源注入非线性冲击磁铁设计研究[J]. 核技术, 2021, 44(6):35-40 doi: 10.11889/j.0253-3219.2021.hjs.44.060202Song Wenbin, Shang Lei, Shang Fenglei, et al. Nonlinear kicker design and research for Hefei advanced light facility[J]. Nuclear Techniques, 2021, 44(6): 35-40 doi: 10.11889/j.0253-3219.2021.hjs.44.060202 [11] 焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136 [12] 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137 [13] Kwiatkowski S, Baptiste K, Barry W, et al. “Camshaft” bunch kicker design for the ALS storage ring[C]//Proceedings of EPAC 2006. 2006. [14] Liu Yongfang, Wang Ruiping, Tong Jin, et al. Development of a high-repetition-rate lumped-inductance kicker magnet prototype for the beam switchyard of SHINE[J]. Nuclear Science and Techniques, 2024, 35: 37. doi: 10.1007/s41365-024-01390-9 [15] 徐宏亮, 王琳, 刘金英, 等. 合肥电子储存环上新旧高频腔的尾场及耦合阻抗的计算[J]. 强激光与粒子束, 2003, 15(2):187-190Xu Hongliang, Wang Lin, Liu Jinying, et al. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring[J]. High Power Laser and Particle Beams, 2003, 15(2): 187-190