留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机污染与缺陷耦合损伤的抑制技术研究

邵智聪 凌秀兰 陈旭彬 陈鑫

邵智聪, 凌秀兰, 陈旭彬, 等. 有机污染与缺陷耦合损伤的抑制技术研究[J]. 强激光与粒子束, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215
引用本文: 邵智聪, 凌秀兰, 陈旭彬, 等. 有机污染与缺陷耦合损伤的抑制技术研究[J]. 强激光与粒子束, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215
Shao Zhicong, Ling Xiulan, Chen Xubin, et al. Research on suppression technology for coupling damage of organic pollution and defect[J]. High Power Laser and Particle Beams, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215
Citation: Shao Zhicong, Ling Xiulan, Chen Xubin, et al. Research on suppression technology for coupling damage of organic pollution and defect[J]. High Power Laser and Particle Beams, 2024, 36: 121004. doi: 10.11884/HPLPB202436.240215

有机污染与缺陷耦合损伤的抑制技术研究

doi: 10.11884/HPLPB202436.240215
基金项目: 国家自然科学基金项目(11774319)、山西省自然科学基金项目(202203021211084)
详细信息
    作者简介:

    邵智聪,2904666867@qq.com

    通讯作者:

    凌秀兰,nmlxlmiao@126.com

  • 中图分类号: O438

Research on suppression technology for coupling damage of organic pollution and defect

  • 摘要: 在真空和空间环境下,光学薄膜的抗激光损伤能力会极大地降低,主要是由于真空环境中放气有机污染与薄膜内部缺陷的耦合效应导致薄膜光场增强。而保护膜技术是一项能够提高光学薄膜抗激光损伤能力的有效措施。基于时域有限差分算法,分析了保护层技术对有机污染液滴与缺陷耦合诱导薄膜光场增强的抑制作用。分析结果显示TiO2薄膜光场的峰值随着保护层厚度增加而下降。保护层折射率为有机污染液滴和膜层折射率的中间值时,光场增强的抑制作用最大。实验结果也对理论分析进行了验证。该研究加深了对真空中光学薄膜抗激光诱导损伤降级机制的理解,对提高真空环境中光学薄膜的抗激光损伤能力有一定参考价值。
  • 图  1  单层TiO2 薄膜中有机污染液滴与缺陷的耦合镀制保护膜模型

    Figure  1.  Coupling of organic contamination droplet and defect in a single-layer TiO2 film with a protective film model

    图  2  保护层对有机污染液滴与缺陷耦合光场分布的影响

    Figure  2.  Effect of protective layer on the distribution of electric field coupling between organic contamination droplet and defect

    图  3  不同厚度保护层下有机污染液滴与缺陷耦合的光场分布

    Figure  3.  Distribution of electric field coupling between the organic contamination droplet and the defect under different thickness protective layers

    图  4  不同折射率保护层下有机污染液滴与缺陷耦合的光场强度

    Figure  4.  Intensity of electric field coupling between the organic contamination droplet and the defect under different refractive index protective layers

    图  5  不同厚度保护层下薄膜的激光损伤阈值

    Figure  5.  Laser damage threshold of the thin film adding protective film of different thicknesses

  • [1] 凌秀兰, 赵元安, 李大伟, 等. 真空环境下光学薄膜的激光损伤[J]. 强激光与粒子束, 2010, 22(10):2322-2326 doi: 10.3788/HPLPB20102210.2322

    Ling Xiulan, Zhao Yuan’an, Li Dawei, et al. Laser-induced damage of optical films in vacuum environments[J]. High Power Laser and Particle Beams, 2010, 22(10): 2322-2326 doi: 10.3788/HPLPB20102210.2322
    [2] 韩克旭. 连续激光对薄膜元件损伤机理的研究[D]. 长春: 长春理工大学, 2023

    Han Kexu. Research on the damage mechanism of thin film elements by continuous laser[D]. Changchun: Changchun University of Science and Technology, 2023
    [3] 凌秀兰. 真空环境下光学薄膜的激光损伤[M]. 北京: 北京理工大学出版社, 2018

    Ling Xiulan. Laser induced damage of optical thin films in vacuum environments[M]. Beijing: Beijing Institute of Technology Press, 2018
    [4] 凌秀兰, 王高, 刘晓凤. 真空环境下光学薄膜的本征损伤机理研究[J]. 激光与光电子学进展, 2015, 52:053101

    Ling Xiulan, Wang Gao, Liu Xiaofeng. Investigation of the intrinsic damage mechanisms for optical thin film in vacuum environments[J]. Laser & Optoelectronics Progress, 2015, 52: 053101
    [5] 许彬, 李斌成, 高椿明, 等. 真空环境下低损耗高反射光学元件性能退化特性[J]. 激光技术, 2020, 44(6):768-772 doi: 10.7510/jgjs.issn.1001-3806.2020.06.021

    Xu Bin, Li Bincheng, Gao Chunming, et al. Performance degradation of low-loss highly-reflective mirrors under vacuum environment[J]. Laser Technology, 2020, 44(6): 768-772 doi: 10.7510/jgjs.issn.1001-3806.2020.06.021
    [6] 陈鑫. 有机污染与缺陷耦合诱导光学薄膜的激光损伤[D]. 太原: 中北大学, 2023

    Chen Xin. Laser damage of optical thin films induced by organic contamination and defect coupling[D]. Taiyuan: North University of China, 2023
    [7] Chen Xin, Ling Xiulan, Liu Ji, et al. Light field intensification in optical films induced by intercoupling of defects and organic contamination[J]. Micromachines, 2022, 13: 387. doi: 10.3390/mi13030387
    [8] 武锦辉, 凌秀兰, 刘吉, 等. 缺陷诱导光学薄膜光场增强损伤分析[J]. 红外与激光工程, 2021, 50:20210357 doi: 10.3788/IRLA20210357

    Wu Jinhui, Ling Xiulan, Liu Ji, et al. Analyses of light field enhancement damage induced by defects in optical thin films[J]. Infrared and Laser Engineering, 2021, 50: 20210357 doi: 10.3788/IRLA20210357
    [9] 刘晓凤, 李笑, 赵元安, 等. SiO2保护膜对高反膜激光损伤特性的改善[J]. 强激光与粒子束, 2010, 22(12):2860-2864 doi: 10.3788/HPLPB20102212.2860

    Liu Xiaofeng, Li Xiao, Zhao Yuan'an, et al. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 2860-2864 doi: 10.3788/HPLPB20102212.2860
    [10] Ling Xiulan, Chen Xin, Liu Xiaofeng. Revisiting defect-induced light field enhancement in optical thin films[J]. Micromachines, 2022, 13: 911. doi: 10.3390/mi13060911
    [11] 程鑫彬, 焦宏飞, 张锦龙, 等. 纳秒激光薄膜损伤机理和应用研究[J]. 光学 精密工程, 2022, 30(21):2568-2590 doi: 10.37188/OPE.20223021.2568

    Cheng Xinbin, Jiao Hongfei, Zhang Jinlong, et al. Research on damage mechanism and application of nanosecond laser coatings[J]. Optics and Precision Engineering, 2022, 30(21): 2568-2590 doi: 10.37188/OPE.20223021.2568
    [12] 苏俊宏, 徐均琪, 汪桂霞, 等. 脉冲激光诱导光学薄膜元件损伤识别方法综述[J]. 光学与光电技术, 2023, 21(1):1-12 doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301001

    Su Junhong, Xu Junqi, Wang Guixia, et al. Survey of damage identification methods for optical film elements induced by pulsed lasers[J]. Optics & Optoelectronic Technology, 2023, 21(1): 1-12 doi: 10.3969/j.issn.1672-3392.2023.1.gxygdjs202301001
    [13] Ling Xiulan, Liu Shenghu, Liu Xiaofeng. Different material modifications in laser-induced damage of optical films in air and vacuum environments[J]. Thin Solid Films, 2020, 703: 137974. doi: 10.1016/j.tsf.2020.137974
    [14] Diaz R, Chambonneau M, Grua P, et al. Influence of vacuum on nanosecond laser-induced surface damage morphology in fused silica at 1064 nm[J]. Applied Surface Science, 2016, 362: 290-296. doi: 10.1016/j.apsusc.2015.11.199
    [15] 邓小红. 1064nm/532nm激光对薄膜损伤阈值的影响研究[D]. 西安: 西安工业大学, 2022

    Deng Xiaohong. Study on the influence of 1064nm/532nm laser on the damage threshold of thin films[D]. Xi'an: Xi'an Technological University, 2022
    [16] Ling Xiulan, Liu Shenghu. Laser-induced thermal damage simulations of optical coatings due to intercoupling of defect and organic contamination[J]. IEEE Photonics Journal, 2018, 10: 6100707.
    [17] Zhang Luwei, Jia Xiaodong, Wang Yunzhe, et al. Effect of femtosecond laser polarization on the damage threshold of Ta2O5/SiO2 film[J]. Applied Sciences, 2022, 12: 1494. doi: 10.3390/app12031494
    [18] Wu Yuling, Xiang Xia, Yu Jingxia, et al. Review: research progress on nanosecond laser irradiation damage of optical films[J]. Nuclear Analysis, 2022, 1: 100045. doi: 10.1016/j.nucana.2022.100045
    [19] Liu King, Miskevich A A, Loiko V A, et al. Interference effects induced by electrodes and their influences on the distribution of light field in perovskite absorber and current matching of perovskite/silicon tandem solar cell[J]. Solar Energy, 2023, 252: 252-259. doi: 10.1016/j.solener.2023.02.003
  • 加载中
图(5)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-10-18
  • 录用日期:  2024-10-28
  • 网络出版日期:  2024-11-02
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回