留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse

Mao Xinyi Chai Changchun Li Fuxing Lin Haodong Zhao Tianlong Yang Yintang

毛心怡, 柴常春, 李福星, 等. 快上升前沿电磁脉冲下片上静电放电防护电路的效应与机理[J]. 强激光与粒子束, 2024, 36: 103005. doi: 10.11884/HPLPB202436.240231
引用本文: 毛心怡, 柴常春, 李福星, 等. 快上升前沿电磁脉冲下片上静电放电防护电路的效应与机理[J]. 强激光与粒子束, 2024, 36: 103005. doi: 10.11884/HPLPB202436.240231
Mao Xinyi, Chai Changchun, Li Fuxing, et al. Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse[J]. High Power Laser and Particle Beams, 2024, 36: 103005. doi: 10.11884/HPLPB202436.240231
Citation: Mao Xinyi, Chai Changchun, Li Fuxing, et al. Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse[J]. High Power Laser and Particle Beams, 2024, 36: 103005. doi: 10.11884/HPLPB202436.240231

快上升前沿电磁脉冲下片上静电放电防护电路的效应与机理

doi: 10.11884/HPLPB202436.240231
详细信息
  • 中图分类号: TN306

Effect and mechanism of on-chip electrostatic discharge protection circuit under fast rising time electromagnetic pulse

Funds: National Natural Science Foundation of China (61974116)
More Information
  • 摘要:

    静电放电(ESD)保护电路广泛存在于CMOS数字电路输入与输出端口,耦合进入设备内部的快上升前沿电磁脉冲(FREMP)在与CMOS电路作用的同时,也不排除作用于防护电路。建立了片上CMOS静电放电保护电路模型并且选取方波作为电磁脉冲信号,从多物理参数模型刻画了器件内部的晶格温度,电流密度以及电场强度分布。探讨了在电磁脉冲注入下电路内部器件的变化,并描述了损伤幅度阈值与脉冲宽度之间的关系。结果表明,在FREMP作用下,CMOS电路中的ESD保护电路模块存在潜在的损伤风险,FREMP的注入导致电路内部发生不可恢复的热损失。此外不同属性的脉冲信号会改变电路的损伤阈值。这些结果对一步评估电磁环境对芯片内部的影响提供了重要参考,有助于开展ESD保护电路的可靠性增强研究。

  • Figure  1.  Structure of circuit and devices

    Figure  2.  I-V characteristics of DTSCR

    Figure  3.  Transient signals of voltage and current

    Figure  4.  Variation of the peak temperature of the device with time

    Figure  5.  Internal temperature distribution of the device under negative pulse

    Figure  6.  Device of SCR1

    Figure  7.  Change of peak temperature inside the device

    Figure  8.  Damage amplitude threshold varying with pulse width

  • [1] Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [2] Bayram Y, Chang P C, Volakis J L, et al. High power EMI on digital circuits within automotive structures[C]//2006 IEEE International Symposium on Electromagnetic Compatibility. 2006: 507-512.
    [3] Hoad R, Carter N J, Herke D, et al. Trends in EM susceptibility of IT equipment[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 390-395. doi: 10.1109/TEMC.2004.831815
    [4] Deng Feng, Ding Fan, Zheng Shengquan. Research on FREMP protection module in RF channel of HF/VHF band[C]//2011 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications. 2011: 520-523.
    [5] Gao Yuexin, Cai Xiaowu, Han Zhengsheng, et al. Design of compact-diode-SCR with low-trigger voltage for full-chip ESD protection[J]. Microelectron Reliab, 2023, 140: 114860. doi: 10.1016/j.microrel.2022.114860
    [6] Vault W L. The damage susceptibility of integrated circuits to a simulated IEMP transient[J]. IEEE Trans Nucl Sci, 1973, 20(6): 40-47. doi: 10.1109/TNS.1973.4327371
    [7] Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser Part Beams, 2021, 33: 103006.
    [8] Wang Chenkun, Zhang Feilong, Lu Fei, et al. A comparison study of DTSCR by TCAD and VFTLP for CDM ESD protection[C]//2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). 2017: 1-4.
    [9] Du Feibo, Song Wenqiang, Hou Fei, et al. Augmented DTSCR with fast turn-on speed for nanoscale ESD protection applications[J]. IEEE Trans Electron Devices, 2020, 67(3): 1353-1356. doi: 10.1109/TED.2020.2965092
    [10] Chen Wenyi, Rosenbaum E, Ker M D. Diode-triggered silicon-controlled rectifier with reduced voltage overshoot for CDM ESD protection[J]. IEEE Trans Device Mater Reliab, 2012, 12(1): 10-14. doi: 10.1109/TDMR.2011.2171487
    [11] Ker M D, Hsu K C. Native-NMOS-triggered SCR with faster turn-on speed for effective ESD protection in a 0.13-μm CMOS Process[J]. IEEE Trans Device Mater Reliab, 2005, 5(3): 543-554. doi: 10.1109/TDMR.2005.853514
    [12] Au T, Syrzycki M. Investigation of STI diodes as electrostatic discharge (ESD) protection devices in deep submicron (DSM) CMOS process[C]//2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). 2013: 1-5.
    [13] Wang Lei, Chai Changchun, Zhao Tianlong, et al. Mechanical-electrical synergy damage effect on GaN HEMT under high-power microwave[J]. Sci China Technol Sci, 2023, 66(8): 2373-2380. doi: 10.1007/s11431-023-2407-3
    [14] Wang Lei, Chai Changchun, Li Fuxing, et al. Influence of gate voltage dependent piezoelectric polarization on damage effect of GaN HEMT induced by high power electromagnetic pulse[J]. Microelectron Reliab, 2022, 136: 114665. doi: 10.1016/j.microrel.2022.114665
    [15] Masetti G, Severi M, Solmi S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon[J]. IEEE Trans Electron Devices, 1983, 30(7): 764-769. doi: 10.1109/T-ED.1983.21207
    [16] Li Yanan, Tan Zhiliang. Design and research of the fast rise time electromagnetic pulse protection module based on PIN diode[J]. Acta Armamentarii, 2018, 39(10): 2066-2072.
    [17] Gao Lei, Chi Lei, Huang Jie. Study on the damage effect of electronic devices under electromagnetic pulse[J]. Electron Compon Inf Technol, 2021, 5(9): 66-67.
    [18] Li Fuxing, Chai Changchun, Liu Yuqian, et al. Study on ESD protection circuit by TCAD simulation and TLP experiment[J]. Micromachines, 2023, 14: 600. doi: 10.3390/mi14030600
    [19] Liang Qishuai, Chai Changchun, Wu Han, et al. Mechanism analysis and thermal damage prediction of high-power microwave radiated CMOS circuits[J]. IEEE Trans Device Mater Reliab, 2021, 21(3): 444-451. doi: 10.1109/TDMR.2021.3104760
    [20] Qin Yingshuo, Chai Changchun, Li Fuxing, et al. Study of self-heating and high-power microwave effects for enhancement-mode p-gate GaN HEMT[J]. Micromachines, 2022, 13: 106. doi: 10.3390/mi13010106
    [21] Wunsch D C, Bell R R. Determination of threshold failure levels of semiconductor diodes and transistors due to pulse voltages[J]. IEEE Trans Nucl Sci, 1968, 15(6): 244-259. doi: 10.1109/TNS.1968.4325054
  • 加载中
图(8)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  35
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-09
  • 录用日期:  2024-09-09
  • 网络出版日期:  2024-09-20
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回