留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快脉冲直线变压器初级放电单元开关电容一体化设计

张天洋 黄涛 丛培天 罗维熙 尹佳辉 翟戎骁

张天洋, 黄涛, 丛培天, 等. 快脉冲直线变压器初级放电单元开关电容一体化设计[J]. 强激光与粒子束, 2024, 36: 115015. doi: 10.11884/HPLPB202436.240291
引用本文: 张天洋, 黄涛, 丛培天, 等. 快脉冲直线变压器初级放电单元开关电容一体化设计[J]. 强激光与粒子束, 2024, 36: 115015. doi: 10.11884/HPLPB202436.240291
Zhang Tianyang, Huang Tao, Cong Peitian, et al. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36: 115015. doi: 10.11884/HPLPB202436.240291
Citation: Zhang Tianyang, Huang Tao, Cong Peitian, et al. Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit[J]. High Power Laser and Particle Beams, 2024, 36: 115015. doi: 10.11884/HPLPB202436.240291

快脉冲直线变压器初级放电单元开关电容一体化设计

doi: 10.11884/HPLPB202436.240291
详细信息
    作者简介:

    张天洋,zhangtianyang@nint.ac.cn

  • 中图分类号: TN78

Assembly design of switch and capacitor for fast linear transformer driver primary discharge unit

  • 摘要: 开关电容器组成的初级放电支路是快脉冲直线变压器(FLTD)的基本单元,在输出电流幅值和前沿不变的前提下,降低单元回路电感可有效减少放电支路及气体开关的使用数量,从而提高FLTD的整体可靠性。因此,设法降低初级支路电感是FLTD关键技术。基于开关电容一体化技术研制了一台低电感FLTD初级放电单元,采用环形高压脉冲电容器作为能量储能元件,其工作电压100 kV,电容量39.6 nF,内电感8.8 nH。实验测试了初级放电单元的工作特性,结果表明:在±50 kV工作电压下,初级放电单元的短路电流幅值40 kA,前沿50 ns,回路电感为101 nH;在±80 kV工作电压下,初级放电单元对匹配负载的输出电流幅值为30 kA,前沿66 ns。
  • 图  1  新型初级放电单元结构示意图

    Figure  1.  Structure diagram of new type primary discharge unit

    图  2  环形高压脉冲电容器结构示意图

    Figure  2.  Structure diagram of ring-shaped high voltage pulse capacitor

    图  3  环形高压脉冲电容器阻抗虚部扫频结果

    Figure  3.  Frequency sweeping result of impedance virtual part of ring-shaped high voltage pulse capacitor

    图  4  初级放电单元实验测试平台

    Figure  4.  Experimental test platform for primary discharge unit

    图  5  短路条件下的放电电流波形

    Figure  5.  Discharge current waveform under short circuit condition

    图  6  匹配负载条件下的放电电流波形

    Figure  6.  Discharge current waveform under matching load condition

  • [1] 彭先觉, 刘成安, 陈银亮, 等. 核爆聚变电站——人类未来能源的希望[J]. 中国工程科学, 2008, 10(1):39-46 doi: 10.3969/j.issn.1009-1742.2008.01.007

    Peng Xianjue, Liu Cheng’an, Chen Yinliang, et al. Nuclear explosion fusion power plant—the hope of the mankind future energy[J]. Strategic Study of CAE, 2008, 10(1): 39-46 doi: 10.3969/j.issn.1009-1742.2008.01.007
    [2] 房俊文. 浅谈核聚变能源——未来的清洁能源[J]. 中国西部科技, 2012, 11(3):55-56 doi: 10.3969/j.issn.1671-6396.2012.03.026

    Fang Junwen. Introduction to fusion energy - the clean energy of the future[J]. Science and Technology of West China, 2012, 11(3): 55-56 doi: 10.3969/j.issn.1671-6396.2012.03.026
    [3] Olson C. Progress on Z-Pinch IFE and HIF target work on Z[C]//Proceedings of the 15th International Symposium on Heavy Ion Inertial Fusion. 2004: 7-11.
    [4] 华欣生, 彭先觉. 快Z箍缩等离子体研究与能源前景[J]. 强激光与粒子束, 2009, 21(6):801-807

    Hua Xinsheng, Peng Xianjue. Fast Z-pinch plasma research and application prospect for fusion energy[J]. High Power Laser and Particle Beams, 2009, 21(6): 801-807
    [5] 孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8:020102 doi: 10.12061/j.issn.2095-6223.2017.020102

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual design on fast Z-Pinch pulsed power driver with hundreds of terawatt[J]. Modern Applied Physics, 2017, 8: 020102 doi: 10.12061/j.issn.2095-6223.2017.020102
    [6] 孙凤举, 姜晓峰, 王志国, 等. 四级串联共用腔体MA级FLTD的设计与仿真[J]. 强激光与粒子束, 2018, 30:035001 doi: 10.11884/HPLPB201830.170351

    Sun Fengju, Jiang Xiaofeng, Wang Zhiguo, et al. Design and simulation of fast linear transformer driver with four stages in series sharing common cavity shell and mega-ampere current[J]. High Power Laser and Particle Beams, 2018, 30: 035001 doi: 10.11884/HPLPB201830.170351
    [7] 单连强, 吴凤娟, 袁宗强, 等. 激光惯性约束聚变动理学效应研究进展[J]. 强激光与粒子束, 2021, 33:012004 doi: 10.11884/HPLPB202133.200235

    Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, et al. Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2021, 33: 012004 doi: 10.11884/HPLPB202133.200235
    [8] 刘燕, 刘腊群, 周良骥, 等. 一种新型低电感磁绝缘传输线的冷腔特性[J]. 强激光与粒子束, 2022, 34:063005

    Liu Yan, Liu Laqun, Zhou Liangji, et al. Cold cavity characteristics of a new type of low-inductance magnetically insulated transmission line[J]. High Power Laser and Particle Beams, 2022, 34: 063005
    [9] 王志国, 孙凤举, 姜晓峰, 等. FLTD大规模气体开关同步触发技术研究[J]. 现代应用物理, 2022, 13:040407 doi: 10.12061/j.issn.2095-6223.2022.040407

    Wang Zhiguo, Sun Fengju, Jiang Xiaofeng, et al. Synchronous trigger technology for large-scale gas switches of FLTD[J]. Modern Applied Physics, 2022, 13: 040407 doi: 10.12061/j.issn.2095-6223.2022.040407
    [10] 降宏瑜, 姜晓峰, 王志国, 等. LTD多间隙气体开关电场优化及自放率实验研究[J]. 现代应用物理, 2022, 13:040410 doi: 10.12061/j.issn.2095-6223.2022.040410

    Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Electric field optimization and pre-fire rate of LTD multi-gap gas switch[J]. Modern Applied Physics, 2022, 13: 040410 doi: 10.12061/j.issn.2095-6223.2022.040410
    [11] Kim A A, Kovalchuk B M, Bastrikov A N, et al. 100 ns current rise time LTD stage[C]//Proceedings of the 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers. 2001: 1491-1494.
    [12] Kim A A, Sinebryukhov V, Kovalchuk B M, et al. Super fast 75 ns LTD stage[C]//Proceedings of the 16th IEEE International Pulsed Power Conference. 2007: 148-151.
    [13] Kim A A, Bastrikov A N, Kovalchuk B M, et al. 100GW fast LTD stages[C]//Proceedings of the 13th International Symposium on High Current Electronics. 2004: 141-144.
    [14] Woodworth J R, Alexander J A, Gruner F R, et al. Low-inductance gas switches for linear transformer drivers[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 060401. doi: 10.1103/PhysRevSTAB.12.060401
    [15] 孙凤举, 邱爱慈, 姜晓峰, 等. 基于共用腔体与内置触发的12级串联太瓦级LTD脉冲源[J]. 现代应用物理, 2022, 13:040404 doi: 10.12061/j.issn.2095-6223.2022.040404

    Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. Twelve-stage linear transformer driver with one terra-watts power on a sharing common cavity shell and internal in-situ triggering method[J]. Modern Applied Physics, 2022, 13: 040404 doi: 10.12061/j.issn.2095-6223.2022.040404
    [16] Douglass J D, Hutsel B T, Leckbee J J, et al. 100 GW linear transformer driver cavity: design, simulations, and performance[J]. Physical Review Accelerators and Beams, 2018, 21: 120401. doi: 10.1103/PhysRevAccelBeams.21.120401
    [17] Zharova N V, Lavrinovich I V, Feduschak V F, et al. Compact nanosecond pulse generator[C]//Proceedings of the 16th International Symposium on High current Electronics. 2010: 300-302.
  • 加载中
图(6)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-09
  • 录用日期:  2024-10-09
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回