留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基本舰船结构的辐射屏蔽因子研究

张芳 董志伟 柴辰睿 周海京 安建祝 赵强 薛碧曦

张芳, 董志伟, 柴辰睿, 等. 基本舰船结构的辐射屏蔽因子研究[J]. 强激光与粒子束, 2024, 36: 126004. doi: 10.11884/HPLPB202436.240292
引用本文: 张芳, 董志伟, 柴辰睿, 等. 基本舰船结构的辐射屏蔽因子研究[J]. 强激光与粒子束, 2024, 36: 126004. doi: 10.11884/HPLPB202436.240292
Zhang Fang, Dong Zhiwei, Chai Chenrui, et al. Research on radiation protection factors of basic ship structures[J]. High Power Laser and Particle Beams, 2024, 36: 126004. doi: 10.11884/HPLPB202436.240292
Citation: Zhang Fang, Dong Zhiwei, Chai Chenrui, et al. Research on radiation protection factors of basic ship structures[J]. High Power Laser and Particle Beams, 2024, 36: 126004. doi: 10.11884/HPLPB202436.240292

基本舰船结构的辐射屏蔽因子研究

doi: 10.11884/HPLPB202436.240292
基金项目: 国家自然科学基金项目(12205024)
详细信息
    作者简介:

    张 芳,zhang_fang@iapcm.ac.cn

  • 中图分类号: O571.33

Research on radiation protection factors of basic ship structures

  • 摘要: 核辐射环境中,舰船、坦克的辐射屏蔽特性关乎着核安全、防护、效应评估以及决策应对等实际应用问题。瞄准舰船的核辐射屏蔽性能开展研究。针对舰船材料及典型结构,采用中子-光子耦合输运方法,定量给出中子源、γ源同时辐照下的辐射屏蔽效能。通过借助大规模并行技术,实现了该深穿透屏蔽问题的高效模拟。该辐照屏蔽研究中考虑了入射中子和γ以及次级γ粒子的综合叠加效应。通过模拟中子和γ分别入射不同厚度、不同材料壳体后的注量、剂量、能谱演化,计算获得了屏蔽体的入射中子、入射γ射线、中子和次级γ及其综合屏蔽因子,给出腔内的屏蔽因子分布规律,材料包括Fe、Al、Pb、船体材料HSLA100钢等,辐射源包括单能中子、单能γ以及核泄漏中子谱和γ谱。研究成果将为船体、坦克等的辐射防护性能的深入分析奠定基础,为核辐射效应评估、应急处理等提供理论支撑。
  • 图  1  Al材料球型结构γ光子剂量衰减率

    Figure  1.  Gamma dose attenuation ratio of Al sphere

    图  2  Al材料球型结构中子剂量衰减率

    Figure  2.  Neutron dose attenuation ratio of Al sphere

    图  3  平面源到点源的等效模型

    Figure  3.  Equivalent model of planar source to point source

    图  4  MC程序中结构建模

    Figure  4.  Structural modeling in MC program

    图  5  1/FNP随板材边界尺寸的变化趋势(Al板厚15 cm)

    Figure  5.  1/FNP vs side length (Al slab with thickness 15 cm )

    图  6  1 MeV中子穿过不同板型材料的辐射衰减率

    Figure  6.  Radiation attenuation ratio of different slab materials for 1 MeV neutrons

    图  7  不同中子能量入射不同厚度钢板后的辐射衰减率

    Figure  7.  Radiation attenuation ratio vs steel slab thicknesses for different neutron incident energies

    图  8  中子谱入射不同厚度HSLA100的辐射衰减率

    Figure  8.  Radiation attenuation ratio vs steel slab thicknesses for neutron spectra

    图  9  1 MeV γ入射不同板型材料的辐射衰减率

    Figure  9.  Radiation attenuation ratio of different slab materials for 1 MeV γ

    图  10  Littleboy 裂变γ谱入射不同厚度HSLA100的辐射衰减率

    Figure  10.  Radiation attenuation ratio vs steel slab thicknesses for Little Boy γ spectra

    图  11  中子和γ同时入射钢板的几种辐射衰减率对比

    Figure  11.  Total radiation attenuation ratio vs steel slab thicknesses for neutron and γ

    图  12  不同HSLA100钢板厚度下探测器端的中子能谱

    Figure  12.  Neutron energy spectrum at detector for different slab thickness

    图  13  不同HSLA100钢板厚度下探测器端的γ能谱

    Figure  13.  γ energy spectrum at detector for different slab thickness

    图  14  不同HSLA100钢板厚度下探测器端的次级γ能谱

    Figure  14.  Secondary γ energy spectrum at detector for different slab thickness

    图  15  垂直向下辐照舱室图

    Figure  15.  Vertical irradiation downward to chamber

    图  16  综合屏蔽因子

    Figure  16.  Total protection coefficient

    表  1  HSLA-100钢的化学成分

    Table  1.   Chemical composition of HSLA-100 steel

    element mass fraction/%
    C 0.026
    Mn 1.520
    P 0.002
    S 0.001
    Si 0.280
    Ni 2.710
    Cr 0.040
    Mo 0.480
    Cu 0.075
    Al 0.002
    Ti 0.005
    O 0.018
    N 0.003
    Fe 94.878
    下载: 导出CSV
  • [1] Leung J K C. Application of shielding factors for protection against gamma radiations during a nuclear accident[J]. IEEE Transactions on Nuclear Science, 1992, 39(5): 1512-1518. doi: 10.1109/23.173235
    [2] Singh V P, Badiger N M. Investigation on radiation shielding parameters of ordinary, heavy and super heavy concretes[J]. Nuclear Technology and Radiation Protection, 2014, 29(2): 149-156. doi: 10.2298/NTRP1402149S
    [3] Dickson E D, Hamby D M. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures[J]. Journal of Radiological Protection, 2014, 34(1): 201-221. doi: 10.1088/0952-4746/34/1/201
    [4] Singh V P, Medhat M E, Badiger N M. Assessment of exposure buildup factors of some oxide dispersion strengthened steels applied in modern nuclear engineering and designs[J]. Nuclear Engineering and Design, 2014, 270: 90-100. doi: 10.1016/j.nucengdes.2013.12.046
    [5] Singh V P, Medhat M E, Badiger N M, et al. Radiation shielding effectiveness of newly developed superconductors[J]. Radiation Physics and Chemistry, 2015, 106: 175-183. doi: 10.1016/j.radphyschem.2014.07.013
    [6] Singh V P, Badiger N M. Comprehensive study on energy absorption buildup factors and exposure buildup factors for photon energy 0.015 to 15 MeV up to 40 mfp penetration depth for gel dosimeters[J]. Radiation Physics and Chemistry, 2014, 103: 234-242. doi: 10.1016/j.radphyschem.2014.05.033
    [7] Singh V P, Badiger N M, Kothan S, et al. Gamma-ray and neutron shielding efficiency of Pb-free gadolinium-based glasses[J]. Nuclear Science and Techniques, 2016, 27: 103. doi: 10.1007/s41365-016-0099-1
    [8] Cherkashina N I, Pavlenko V I, Shkaplerov A N, et al. Neutron attenuation in some polymer composite material[J]. Advances in Space Research, 2024, 73(5): 2638-2651. doi: 10.1016/j.asr.2023.12.003
    [9] Singh P S, Singh T, Kaur P. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents[J]. Annals of Nuclear Energy, 2008, 35(6): 1093-1097. doi: 10.1016/j.anucene.2007.10.007
    [10] Akar Tarim U, Gurler O, Ozmutlu E N, et al. Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples[J]. Annals of Nuclear Energy, 2013, 58: 198-201. doi: 10.1016/j.anucene.2013.03.021
    [11] 邓力. 输运问题蒙特卡罗模拟方法回顾及展望[J]. 强激光与粒子束, 2022, 34:026001 doi: 10.11884/HPLPB202234.210402

    Deng Li. Retrospect and outlook of Monte Carlo simulated methods for transport problems[J]. High Power Laser and Particle Beams, 2022, 34: 026001 doi: 10.11884/HPLPB202234.210402
    [12] 柴辰睿, 郝建红, 张芳, 等. 舰船舱室的早期伽马辐射屏蔽特性[J]. 强激光与粒子束, 2024, 36:043029 doi: 10.11884/HPLPB202436.230373

    Chai Chenrui, Hao Jianhong, Zhang Fang, et al. Shielding characteristics of ship cabin against early gamma radiation in nuclear explosions[J]. High Power Laser and Particle Beams, 2024, 36: 043029 doi: 10.11884/HPLPB202436.230373
    [13] 郑建华, 晏骥, 苏明, 等. 神光Ⅲ主机装置内爆中子和伽马辐射特性的数值模拟[J]. 强激光与粒子束, 2015, 27:112007 doi: 10.11884/HPLPB201527.112007

    Zheng Jianhua, Yan Ji, Su Ming, et al. Numerical study on characteristics of neutron and gamma radiations from implosions on Shenguang Ⅲ laser facility[J]. High Power Laser and Particle Beams, 2015, 27: 112007 doi: 10.11884/HPLPB201527.112007
    [14] Cho G, Kim H K, Woo H, et al. Electronic dose conversion technique using a NaI(Tl) detector for assessment of exposure dose rate from environmental radiation[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 981-985. doi: 10.1109/23.682692
    [15] 谭笑, 邓力, 张玲玉, 等. JMCT3.0蒙特卡罗质子及低能光子/电子输运功能开发及检验[J]. 强激光与粒子束, 2024, 36:096002 doi: 10.11884/HPLPB202436.240117

    Tan Xiao, Deng Li, Zhang Lingyu, et al. Development and tests of functions of proton, low-energy photon and electron transport in JMCT3.0 Monte Carlo particle transport program[J]. High Power Laser and Particle Beams, 2024, 36: 096002 doi: 10.11884/HPLPB202436.240117
    [16] 申靖文, 胡也, 郑俞, 等. 蒙特卡罗输运模拟软件JMCT的深穿透屏蔽计算[J]. 强激光与粒子束, 2018, 30:046002 doi: 10.11884/HPLPB201830.170222

    Shen Jingwen, Hu Ye, Zheng Yu, et al. Three-dimensional Monte Carlo transport code JMCT in shielding engineering application[J]. High Power Laser and Particle Beams, 2018, 30: 046002 doi: 10.11884/HPLPB201830.170222
    [17] Verst C G. Evaluation of shielding efficacy of a ferrite containing ceramic material[R]. Washington: Savannah River Site (SRS), Aiken, SC (United States), Savannah River National Lab (SRNL), 2015.
    [18] Holmes R L, White S W. Standardized unclassified Little Boy amd Fat Man outputs[R]. 2013.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  40
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-10-31
  • 录用日期:  2024-10-31
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回