留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高能逃逸电子机制的气体开关自击穿稳定性

耿玖源 崔言程 王海涛 朱丹妮

耿玖源, 崔言程, 王海涛, 等. 基于高能逃逸电子机制的气体开关自击穿稳定性[J]. 强激光与粒子束, 2024, 36: 115018. doi: 10.11884/HPLPB202436.240305
引用本文: 耿玖源, 崔言程, 王海涛, 等. 基于高能逃逸电子机制的气体开关自击穿稳定性[J]. 强激光与粒子束, 2024, 36: 115018. doi: 10.11884/HPLPB202436.240305
Geng Jiuyuan, Cui Yancheng, Wang Haitao, et al. Self-breakdown stability of gas switch based on high-energy runaway electron mechanism[J]. High Power Laser and Particle Beams, 2024, 36: 115018. doi: 10.11884/HPLPB202436.240305
Citation: Geng Jiuyuan, Cui Yancheng, Wang Haitao, et al. Self-breakdown stability of gas switch based on high-energy runaway electron mechanism[J]. High Power Laser and Particle Beams, 2024, 36: 115018. doi: 10.11884/HPLPB202436.240305

基于高能逃逸电子机制的气体开关自击穿稳定性

doi: 10.11884/HPLPB202436.240305
基金项目: 国家自然科学基金项目(62301585)
详细信息
    作者简介:

    耿玖源,gengjiuyuan@foxmail.com

  • 中图分类号: TL503

Self-breakdown stability of gas switch based on high-energy runaway electron mechanism

  • 摘要: 为实现脉冲驱动源气体主开关的精确控制技术,研制了基于电晕稳定机理的气体触发开关,并对稳定电晕放电过程以及高能逃逸电子对击穿稳定性的影响进行分析,揭示了抑制高能逃逸电子产生有助于增加气体开关自击穿稳定性的机制。从气体介质和电场条件两个方面进行实验研究,对比该型气体开关的自击穿稳定性,实验结果表明:在气压0.06 MPa至0.56 MPa范围内,气体开关充15%SF6/N2混合气体,其自击穿离散度不超过6%,最低可达1.4%;当SF6/N2混合气体内的电负性气体占比小于30%时,气体开关的自击穿电压离散度保持在2%~4%范围内;在充电电压小于1800 V范围内,改变间隙内电场的时域变化速度,可降低自击穿电压的离散度,当电压上升速度为12.4 kV/μs时,自击穿电压为242 kV,离散度为0.2%;在0.3 MPa的15%SF6/N2混合气体内,降低触发极尖端的场不均匀系数,击穿稳定性未得到明显改善,但是在电场时域变化速度增加时,自击穿电压离散度依然可以保持在1%以下;利用沟槽型触发极代替楔形触发极,击穿电压离散度最低可达0.15%,且击穿电压稳定在248 kV附近。
  • 图  1  电晕稳定触发开关结构图

    Figure  1.  Structure of corona stabilized triggered switch (CSTS)

    图  2  自击穿状态场位形

    Figure  2.  E-field configuration in self-breakdown state

    图  3  触发极结构

    Figure  3.  Structure of trigger electrode

    图  4  不同触发极结构参数下场不均匀系数f对比

    Figure  4.  Comparison of the non-uniform coefficient f of different trigger electrode structure

    图  5  极不均匀场下混合气体放电过程示意图

    Figure  5.  Schematic diagram of mixed gas discharge process under extremely non-uniform field

    图  6  开关自击穿实验平台电路原理图及开关高压极脉冲电压波形

    Figure  6.  Schematic of CSTS self-breakdown experiment and the charging voltage on HV electrode

    图  7  15%SF6/N2混合气体中不同气压下气体开关击穿电压分布及离散度变化

    Figure  7.  Variation of breakdown voltage distribution and dispersion of gas switch under different pressure in 15%SF6/N2 gas mixture

    图  8  15%SF6/Ar混合气体中不同气压下气体开关击穿电压分布

    Figure  8.  15% breakdown voltage distribution of gas switch under different pressure in SF6/Ar gas mixture

    图  9  SF6/N2中不同SF6占比对击穿电压及其离散度的影响

    Figure  9.  Influence of SF6 ratio on breakdown voltage and dispersion in SF6/N2 gas mixture

    图  10  不同Dp下开关自击穿电压分布

    Figure  10.  Distribution of self-breakdown voltage under different Dp

    图  11  不同U1下的平均自击穿电压及其离散变化

    Figure  11.  Variation of average self-breakdown voltage and dispersion under different U1

    图  12  不同Dp下击穿电压离散度对电压U1的变化关系

    Figure  12.  Variation of the breakdown voltage dispersion with voltage U1 under different Dp

    图  13  不同SF6占比下气体开关自击穿离散度随电压U1的变化

    Figure  13.  Variation of the breakdown voltage dispersion with voltage U1 under different SF6 proportion

    图  14  SF6与N2和Ar混合气体中气体开关自击穿离散度随电压U1的变化

    Figure  14.  Variation of the breakdown voltage dispersion with voltage U1 in gas mixture of SF6, N2 and Ar

    图  15  电晕稳定阶段高能RAEs示意图

    Figure  15.  Schematic diagram of high-energy RAEs during corona stabilization stage

    图  16  楔形触发极和沟槽型触发极场位形结构对比

    Figure  16.  Comparison of E-field configuration between wedge-shaped trigger and groove-shaped trigger

    图  17  沟槽型触发极20次重复频率自击穿典型波形,U1=1 300 V,Dp=5 mm

    Figure  17.  Typical breakdown waveform of 20 pulses of groove trigger, U1=1 300 V, Dp=5 mm

    图  18  沟槽型触发极的自击穿电压及离散度随U1变化

    Figure  18.  Variation of the self-breakdown voltage and dispersion of the groove-shaped trigger with U1

    表  1  电晕稳定触发开关主要结构参数

    Table  1.   Main parameters of the CSTS

    main gap
    length/cm
    low voltage electrode
    outer radius/cm
    low voltage electrode
    inner radius/cm
    main trigger
    ring radius/cm
    assistant trigger
    ring radius/cm
    main trigger
    ring height/cm
    outer cylinder
    radius/cm
    2.65 7.5 2 1.25 1.45 1 20
    下载: 导出CSV
  • [1] 张嘉焱, 舒挺, 袁成卫. 高功率微波空间功率合成的初步研究[J]. 强激光与粒子束, 2007, 19(6):915-918

    Zhang Jiayan, Shu Ting, Yuan Chengwei. Primary study on spatial powers combining of parallel and intersectant beams of high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(6): 915-918
    [2] Granatstein V L, Parker R K, Armstrong C M. Vacuum electronics at the dawn of the twenty-first century[J]. Proceedings of the IEEE, 1999, 87(5): 702-716. doi: 10.1109/5.757251
    [3] Liu Zhenbang, Song Falun, Jin Hui, et al. Coherent combination of power in space with two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284-287. doi: 10.1109/LED.2021.3137927
    [4] MacGregor S J, Turnbull S M, Tuema F A, et al. A 100 kV, 1 kHz triggered pulse generator[C]//Proceedings of 1996 International Power Modulator Symposium. 1996: 153-156.
    [5] Beveridge J R, Macgregor S J, Timoshkin I V, et al. A corona-stabilised plasma closing switch[C]//IEEE International Power Modulators and High-Voltage Conference, 2008: 487-490.
    [6] Larsson A, Yap D, Lim Y W. Time jitter study of a corona-stabilized closing switch[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2646-2652. doi: 10.1109/TPS.2012.2208103
    [7] Liang Tianxue, Jiang Xiaofeng, Wang Zhiguo, et al. Characteristics study of multigaps gas switch with corona discharge for voltage balance[J]. IEEE Transactions on Plasma Science, 2014, 42(2): 340-345. doi: 10.1109/TPS.2013.2295096
    [8] Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420
    [9] Tarasenko V F, Zhang Cheng, Baksht E K, et al. Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases[J]. Matter and Radiation at Extremes, 2017, 2(3): 105-116. doi: 10.1016/j.mre.2016.10.004
    [10] 邵涛. 重复频率纳秒脉冲气体击穿研究[D]. 北京: 中国科学院研究生院(电工研究所), 2006: 60-88

    Shao Tao. Study on repetitive nanoseeond-pulse breakdown in gases[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2006: 60-88
    [11] Stankevich Y L, Kalinin V G. Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark discharge in air[J]. Soviet Physics Doklady, 1968, 12: 1042.
    [12] Gurevich A V, Milikh G M, Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Physics Letters A, 1992, 165(5/6): 463-468.
    [13] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705

    Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705
    [14] Shea J J. Physics of pulsed breakdown in gases[J]. IEEE Electrical Insulation Magazine, 2001, 17(5): 60-61.
    [15] 耿玖源, 杨建华, 舒挺, 等. 10 GW甘油介质双螺旋Blumlein脉冲形成线[J]. 强激光与粒子束, 2023, 35:065004 doi: 10.11884/HPLPB202335.230005

    Geng Jiuyuan, Yang Jianhua, Shu Ting, et al. 10 GW dual-spiral Blumlein pulse forming lines in glycerol medium[J]. High Power Laser and Particle Beams, 2023, 35: 065004 doi: 10.11884/HPLPB202335.230005
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  29
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-04
  • 修回日期:  2024-10-11
  • 录用日期:  2024-10-14
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回