Self-breakdown stability of gas switch based on high-energy runaway electron mechanism
-
摘要: 为实现脉冲驱动源气体主开关的精确控制技术,研制了基于电晕稳定机理的气体触发开关,并对稳定电晕放电过程以及高能逃逸电子对击穿稳定性的影响进行分析,揭示了抑制高能逃逸电子产生有助于增加气体开关自击穿稳定性的机制。从气体介质和电场条件两个方面进行实验研究,对比该型气体开关的自击穿稳定性,实验结果表明:在气压0.06 MPa至0.56 MPa范围内,气体开关充15%SF6/N2混合气体,其自击穿离散度不超过6%,最低可达1.4%;当SF6/N2混合气体内的电负性气体占比小于30%时,气体开关的自击穿电压离散度保持在2%~4%范围内;在充电电压小于
1800 V范围内,改变间隙内电场的时域变化速度,可降低自击穿电压的离散度,当电压上升速度为12.4 kV/μs时,自击穿电压为242 kV,离散度为0.2%;在0.3 MPa的15%SF6/N2混合气体内,降低触发极尖端的场不均匀系数,击穿稳定性未得到明显改善,但是在电场时域变化速度增加时,自击穿电压离散度依然可以保持在1%以下;利用沟槽型触发极代替楔形触发极,击穿电压离散度最低可达0.15%,且击穿电压稳定在248 kV附近。-
关键词:
- 逃逸电子 /
- 电晕稳定触发开关 /
- SF6/N2混合气体放电 /
- 不均匀场 /
- 脉冲功率技术
Abstract: To achieve precise control of the main triggered switch of the pulsed power source, a triggered gas switch based on the principle of corona stabilization was developed. The process of stabilized corona discharge and the influence of high-energy runaway electrons on the stability of breakdown were analyzed. This study also revealed the mechanism by which suppressing high-energy runaway electrons was beneficial in increasing the stability of gas switch self-breakdown. The experimental study was carried out from the perspectives of gas medium and E-field conditions, and the self-breakdown stability of the gas switch was compared. The self-breakdown dispersion of the gas switch filled with 15% SF6/N2 mixed gas was no more than 6% within the pressure of 0.06 MPa to 0.56 MPa, while the lowest value was 1.4%. The self-breakdown voltage dispersion remained within the range of 2%-4% when the electrically negative gas content in the SF6/N2 mixed gas was less than 30%. Within the charging voltage range of less than1800 V, by changing the time-domain variation speed of the E-field in the gap, the self-breakdown voltage dispersion could be reduced to 0.2% with the breakdown voltage of 242 kV, while the voltage on the high voltage electrode rising speed was 12.4 kV/μs. However, reducing the field non-uniform coefficient didn`t significantly improve the breakdown stability in the 15% SF6/N2 mixed gas at 0.3 MPa, but the self-breakdown voltage dispersion was still kept below 1% when the voltage rising speed increased on the high voltage electrode. By replacing the wedge-shaped trigger electrode with a groove-shaped trigger electrode, the minimum self-breakdown voltage dispersion could be as low as 0.15%, and the breakdown voltage was stabilized around 248 kV. -
表 1 电晕稳定触发开关主要结构参数
Table 1. Main parameters of the CSTS
main gap
length/cmlow voltage electrode
outer radius/cmlow voltage electrode
inner radius/cmmain trigger
ring radius/cmassistant trigger
ring radius/cmmain trigger
ring height/cmouter cylinder
radius/cm2.65 7.5 2 1.25 1.45 1 20 -
[1] 张嘉焱, 舒挺, 袁成卫. 高功率微波空间功率合成的初步研究[J]. 强激光与粒子束, 2007, 19(6):915-918Zhang Jiayan, Shu Ting, Yuan Chengwei. Primary study on spatial powers combining of parallel and intersectant beams of high power microwave[J]. High Power Laser and Particle Beams, 2007, 19(6): 915-918 [2] Granatstein V L, Parker R K, Armstrong C M. Vacuum electronics at the dawn of the twenty-first century[J]. Proceedings of the IEEE, 1999, 87(5): 702-716. doi: 10.1109/5.757251 [3] Liu Zhenbang, Song Falun, Jin Hui, et al. Coherent combination of power in space with two X-band gigawatt coaxial multi-beam relativistic klystron amplifiers[J]. IEEE Electron Device Letters, 2022, 43(2): 284-287. doi: 10.1109/LED.2021.3137927 [4] MacGregor S J, Turnbull S M, Tuema F A, et al. A 100 kV, 1 kHz triggered pulse generator[C]//Proceedings of 1996 International Power Modulator Symposium. 1996: 153-156. [5] Beveridge J R, Macgregor S J, Timoshkin I V, et al. A corona-stabilised plasma closing switch[C]//IEEE International Power Modulators and High-Voltage Conference, 2008: 487-490. [6] Larsson A, Yap D, Lim Y W. Time jitter study of a corona-stabilized closing switch[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2646-2652. doi: 10.1109/TPS.2012.2208103 [7] Liang Tianxue, Jiang Xiaofeng, Wang Zhiguo, et al. Characteristics study of multigaps gas switch with corona discharge for voltage balance[J]. IEEE Transactions on Plasma Science, 2014, 42(2): 340-345. doi: 10.1109/TPS.2013.2295096 [8] Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420 [9] Tarasenko V F, Zhang Cheng, Baksht E K, et al. Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases[J]. Matter and Radiation at Extremes, 2017, 2(3): 105-116. doi: 10.1016/j.mre.2016.10.004 [10] 邵涛. 重复频率纳秒脉冲气体击穿研究[D]. 北京: 中国科学院研究生院(电工研究所), 2006: 60-88Shao Tao. Study on repetitive nanoseeond-pulse breakdown in gases[D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2006: 60-88 [11] Stankevich Y L, Kalinin V G. Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark discharge in air[J]. Soviet Physics Doklady, 1968, 12: 1042. [12] Gurevich A V, Milikh G M, Roussel-Dupre R. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm[J]. Physics Letters A, 1992, 165(5/6): 463-468. [13] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705 [14] Shea J J. Physics of pulsed breakdown in gases[J]. IEEE Electrical Insulation Magazine, 2001, 17(5): 60-61. [15] 耿玖源, 杨建华, 舒挺, 等. 10 GW甘油介质双螺旋Blumlein脉冲形成线[J]. 强激光与粒子束, 2023, 35:065004 doi: 10.11884/HPLPB202335.230005Geng Jiuyuan, Yang Jianhua, Shu Ting, et al. 10 GW dual-spiral Blumlein pulse forming lines in glycerol medium[J]. High Power Laser and Particle Beams, 2023, 35: 065004 doi: 10.11884/HPLPB202335.230005