A novel design of solid state inductive adder based on LC resonance
-
摘要: 针对加速器传统闸流管半正弦冲击磁铁脉冲电源的低重频以及短寿命问题,研制了一种基于LC谐振放电的半正弦感应叠加脉冲电源。脉冲的产生由两种开关配合控制,变压器初级IGBT作为主动脉冲开启开关,次级高压硅堆作为被动脉冲关断开关,这种设计提高了有较长关断延时的大功率IGBT在窄脉冲应用的可能性。电源利用变压器磁芯饱和的特性,通过感应叠加初级二次反向谐振实现储能电容能量的自回收,降低了电路的充电时间以及热损耗。通过结合PSpice软件仿真和电路实验,研制出了一台5级叠加的脉冲电源原理样机。测试结果表明,相较于传统闸流管半正弦脉冲电源,该脉冲电源可实现更高的脉冲重复频率以及更低的功率损耗,可为加速器半正弦冲击磁铁系统提供更多设计选择方案。Abstract: To address the issues of low repetition frequency and short lifespan associated with the traditional thyratron half-sine pulse power supply used in accelerators, a new half-sine type inductive adder pulse power supply based on LC resonance was developed. The pulse generation is controlled by two types of switches: IGBTs in the primary side of the transformer serve as the active pulse turn-on switch, while the secondary side high-voltage silicon stack acts as the passive pulse turn-off switch. This design increases the possibility of using high-power IGBT with long turn-off delay in narrow pulse applications. By utilizing the saturation characteristic of the transformer core, the energy of the storage capacitor is self-supplied through reverse resonance in the primary side of the adder, reducing the circuit's charging time and thermal loss. By combining PSpice simulation and circuit experiments, a prototype of a 5-layer stack pulse power supply was developed and tested under different parameters. Experimental results have shown that compared to the traditional thyratron half-sine pulse power supply, this pulse power supply can achieve higher pulse repetition frequency and lower power loss.
-
Key words:
- LC resonance /
- half-sine pulse /
- inductive adder /
- high-power IGBT /
- energy recovery
-
表 1 两种工作状态的感应叠加脉冲电源对比
Table 1. Comparison of inductive adder in two working states
pulse type load type capacitance of the energy storage capacitor pulse width square resistive determined by pulse voltage drop limitation adjustable by switch drive time half-sine inductive solely determined by pulse width and resonant inductance solely determined by resonant inductance and capacitance -
[1] Takayanagi T, Ueno T, Horino K. Development of low inductance circuit for radially symmetric circuit[J]. Journal of Physics: Conference Series, 2019, 1350: 012183. doi: 10.1088/1742-6596/1350/1/012183 [2] The CEPC Study Group. CEPC conceptual design report[R]. IHEP-CEPC-DR-2018-02, IHEP-EP-2018-01, IHEP-TH-2018-01, 2018. [3] 吴官健, 王磊, 王冠文, 等. 环形正负电子对撞机注入引出分布参数型冲击磁铁设计[J]. 强激光与粒子束, 2023, 35:054002 doi: 10.11884/HPLPB202335.220364Wu Guanjian, Wang Lei, Wang Guanwen, et al. Design of injection and extraction delay-line kicker magnet for circular electron-positron collider[J]. High Power Laser and Particle Beams, 2023, 35: 054002 doi: 10.11884/HPLPB202335.220364 [4] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学 力学 天文学, 2014, 44(10): 1075-1094Jiang Xiaomig, Wang Jiuqing, Qin Qing, et al. Chinese high energy photon source and the test facility[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(10): 1075-1094 [5] Yang J C, Xia J W, Xiao G Q, et al. High Intensity heavy ion Accelerator Facility(HIAF) in China[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 317: 263-265. doi: 10.1016/j.nimb.2013.08.046 [6] Li Jingyi, Dong H Y, Duan Z, et al. Conceptual design of HEPS injector[C]//Proceedings of the 9th International Particle Accelerator Conference. 2018: 1394-1397. [7] 王震宇. 电路分析[M]. 北京: 科学出版社, 2006Wang Zhenyu. Circuit analysis[M]. Beijing: Science Press, 2006 [8] 陈锦晖. BEPCII注入冲击磁铁电源系统设计与研制[D]. 北京: 中国科学院研究生院, 2006Chen Jinhui. Research and development of injection kicker power supply systems for the BEPCII[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2006 [9] Kirbie H, Caporaso G, Goerz D, et al. MHz repetition rate solid-state driver for high current induction accelerators[C]//Proceedings of the 1999 Particle Accelerator Conference (Cat. No. 99CH36366). 1999: 625-627. [10] Watson J A, Cook E G, Chen Y J, et al. A solid-state modulator for high speed kickers[C]//PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No. 01CH37268). 2001: 3738-3740. [11] Cook E G, Allen F V, Anaya E M, et al. Solid-state modulator R&D at LLNL[C]//International Workshop on Recent Progress of Induction Accelerators. 2002. [12] Cook E G, Akana G, Gower E J, et al. Solid-state modulators for RF and fast kickers[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 637-641. [13] 王冠文, 陈锦晖, 霍丽华, 等. HEPS增强器凸轨磁铁脉冲电源的设计与实现[J]. 强激光与粒子束, 2024, 36:025014 doi: 10.11884/HPLPB202436.230195Wang Guanwen, Chen Jinhui, Huo Lihua, et al. Design and implementation of HEPS booster bumper pulser[J]. High Power Laser and Particle Beams, 2024, 36: 025014 doi: 10.11884/HPLPB202436.230195 [14] FZ600R12KS4. https://www.infineon.com/cms/en/product/power/igbt/igbt-modules/fz600r-12ks4/. [15] 江伟华. 高重复频率脉冲功率技术及其应用: (3)磁开关的作用[J]. 强激光与粒子束, 2012, 24(6):1269-1275 doi: 10.3788/HPLPB20122406.1269Jiang Weihua. Repetition rate pulsed power technology and its applications: (iii) The role of magnetic switches[J]. High Power Laser and Particle Beams, 2012, 24(6): 1269-1275 doi: 10.3788/HPLPB20122406.1269