留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂玻璃探测器6Li原子数标定

安力 肖军 王新华 谢雷 蒋励 杨杰成 郭海萍 韩子杰

安力, 肖军, 王新华, 等. 锂玻璃探测器6Li原子数标定[J]. 强激光与粒子束, 2024, 36: 126001. doi: 10.11884/HPLPB202436.240320
引用本文: 安力, 肖军, 王新华, 等. 锂玻璃探测器6Li原子数标定[J]. 强激光与粒子束, 2024, 36: 126001. doi: 10.11884/HPLPB202436.240320
An Li, Xiao Jun, Wang Xinhua, et al. Calibration of 6Li atomic number of lithium glass detector[J]. High Power Laser and Particle Beams, 2024, 36: 126001. doi: 10.11884/HPLPB202436.240320
Citation: An Li, Xiao Jun, Wang Xinhua, et al. Calibration of 6Li atomic number of lithium glass detector[J]. High Power Laser and Particle Beams, 2024, 36: 126001. doi: 10.11884/HPLPB202436.240320

锂玻璃探测器6Li原子数标定

doi: 10.11884/HPLPB202436.240320
详细信息
    作者简介:

    安 力,anli1973@163.com

    通讯作者:

    肖 军,412459251@qq.com

  • 中图分类号: O571.5

Calibration of 6Li atomic number of lithium glass detector

  • 摘要: 在聚变包层中子学性能的实验检验中,造氚率是重要的测量参数之一,探测器中6Li原子数目作为计算造氚率的归一化因子,是决定测量结果精度的关键因素,必须进行精确标定。对6Li原子数标定原理、实验配置及过程、不确定度量化方法进行具体介绍,并首次在中国绵阳研究堆(CMRR)的M5水平孔道以锗单晶单色器获得32.36 meV中子对小型锂玻璃探测器中6Li原子数进行了标定,不确定度为2.62%。
  • 图  1  6Li原子数标定流程图

    Figure  1.  Flow chart for calibrating the number of 6Li

    图  2  6Li原子数标定实验测量布局图

    Figure  2.  Schematic diagram of the measurement layout for calibrating the number of 6Li

    图  3  中子平均通量随时间变化图

    Figure  3.  Variation of average neutron flux with time

    图  4  探测器结构示意图

    Figure  4.  Schematic diagram of the detector structure

    图  5  锂玻璃闪烁探测器

    Figure  5.  Lithium glass scintillation detector

    图  6  测量系统电子学框图

    Figure  6.  Electronic block diagram of measurement system

    图  7  反应堆M5孔道32.36 meV 中子辐照下的脉冲高度谱

    Figure  7.  Pulse height spectra for the 6Li and 7Li glasses under 32.36 meV neutron irradiation in the M5 channel of the reactor

    图  8  源中子谱及对应的6Li (n,α) T反应截面

    Figure  8.  Source neutron spectrum and corresponding 6Li (n,α) T reaction cross section

    表  1  不同散射体对实验的影响

    Table  1.   Influence of different scatterers on the experiment

    No. scatterer 6Li (n,α) T reaction rate 197Au(n,γ) 198Au reaction rate
    1 without scatter 5.36×10−23 9.85×10−24
    2 cadmium sleeve 5.36×10−23 9.85×10−24
    3 cadmium sleeve\sample holder 5.36×10−23 9.85×10−24
    4 cadmium sleeve\sample holder\air 4.99×10−23 9.50×10−24
    5 cadmium sleeve\sample holder\air\neutron absorbing cavity 4.99×10−23 9.50×10−24
    6 cadmium sleeve\sample holder\air\neutron absorbing cavity\3D adjustable platform base 4.99×10−23 9.50×10−24
    7 ratio between reaction rates without and with scatterers 93.10% 93.12%
    下载: 导出CSV

    表  2  不确定度列表

    Table  2.   List of uncertainty items

    No. item of uncertainty coefficient relative uncertainty/%
    1 tritium production reaction rate nt 1.18 0.41
    2 the activation reaction rate n 1.18 1.68
    3 counting rate of the beam monitor Nm1 1.18 1.00
    4 counting rate of the beam monitor Nm2 1.18 0.02
    5 microscopic cross-section of 197Au(n,γ) 198Au σ 1.18 0.14
    6 microscopic cross-section of 6Li(n, T)4He σT 1.00 0.51
    7 number of Au atom N197 1.18 0.24
    8 detector cross-sectional area S 0.18 1.00
    9 neutron beam profile density uniformity k 1.18 0.80
    下载: 导出CSV
  • [1] Ma Jimin, An Li, He Tie, et al. Neutronic experiment and analyses of a hybrid tritium breeding blanket mockup for CFETR[J]. Annals of Nuclear Energy, 2021, 161: 108431. doi: 10.1016/j.anucene.2021.108431
    [2] He Tie, Wang Xinhua, An Li, et al. An online method to measure tritium production rate of fusion-fission hybrid reactor in CAEP[J]. Fusion Engineering and Design, 2018, 137: 43-47. doi: 10.1016/j.fusengdes.2018.08.012
    [3] Yamaguchi S, Oyama Y, Nakamura T, et al. An on-line method for tritium production measurement with a pair of lithium-glass scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1987, 254(2): 413-418.
    [4] Batistoni P, Angelone M, Carconi P, et al. Neutronics experiments on HCPB and HCLL TBM mock-ups in preparation of nuclear measurements in ITER[J]. Fusion Engineering and Design, 2010, 85(7/9): 1675-1680.
    [5] 龙河清. 内充气正比计数器氚的绝对测量[J]. 计量学报, 1989, 10(2):144-150

    Long Heqing. Apparatus with an internal gas proportional counter for absolute measurement of tritium[J]. Acta Metrologica Sinica, 1989, 10(2): 144-150
    [6] Sato S, Ochiai K, Verzilov Y, et al. Measurement of tritium production rate in water cooled pebble bed multi-layered blanket mockup by DT neutron irradiation experiment[J]. Nuclear Fusion, 2007, 47(7): 517-521. doi: 10.1088/0029-5515/47/7/003
    [7] Batistoni P, Angelone M, Bettinali L, et al. Neutronics experiment on a helium cooled pebble bed (HCPB) breeder blanket mock-up[J]. Fusion Engineering and Design, 2007, 82(15/24): 2095-2104.
    [8] Verzilov Y, Maekawa F, Oyama Y. A novel method for solving lithium carbonate pellet by binary-acid for tritium production rate measurement by liquid scintillation counting technique[J]. Journal of Nuclear Science and Technology, 1996, 33(5): 390-395. doi: 10.1080/18811248.1996.9731923
    [9] Kudo H, Tanak K, Amano H. Chemical behaviors of tritium produced by the 6Li(n, α)T reaction in lithium oxide[J]. Journal of Inorganic and Nuclear Chemistry, 1978, 40(3): 363-367. doi: 10.1016/0022-1902(78)80406-0
    [10] Pillon M, Angelone M, Batistoni P, et al. Development of on-line tritium monitor based upon artificial diamond for fusion applications[J]. IEEE Transactions on Nuclear Science, 2011, 58(3): 1141-1144. doi: 10.1109/TNS.2011.2134868
    [11] Yagi T, Kondo K, Misawa T, et al. Application of a 6LiF small neutron detector with an optical fiber to tritium production rate measurement in D-T neutron fields[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 777-785. doi: 10.1080/18811248.2011.9711760
    [12] 段绍节. 中子学宏观实验[M]. 北京: 国防工业出版社, 2008

    Duan Shaojie. Amacro experiment of neutronics[M]. Beijing: National Defense Industry Press, 2008
    [13] Tong Yanjuan. Chang Song, Li Xuezhi. Determination of lithium in glass by AAS[J]. Glass, 2005, 3: 40-41.
    [14] Gualdrini G, Bedogni R, Monteventi F. Developing a thermal neutron irradiation system for the calibration of personal dosemeters in terms of H P(10)[J]. Radiation Protection Dosimetry, 2004, 110(1/4): 43-48.
    [15] Angelone M, Fonnesu N, Colangeli A, et al. Calibration and test of a 6LiF-diamond detector for the HCPB mock-up experiment at JET[J]. Fusion Engineering and Design, 2019, 146: 1755-1758. doi: 10.1016/j.fusengdes.2019.01.158
    [16] Finocchiaro P, Cosentino L, Lo Meo S, et al. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 885: 86-90. doi: 10.1016/j.nima.2017.12.066
    [17] Qin J G, An L, Lu X X, et al. Note: calibration of majority isotopes for enriched and depleted uranium fission chambers by using the elimination method with fast neutrons[J]. Review of Scientific Instruments, 2018, 89: 116104. doi: 10.1063/1.5052617
    [18] Marlies L B, Désirée R, Marcel R, et al. The PTB thermal neutron calibration facility[R]. Physikalisch-Technische Bundesanstalt, Braunschweig, 2018.
    [19] Xie Lei, Chen Xiping, Fang Leiming, et al. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 915: 31-35.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  27
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-11
  • 修回日期:  2024-11-16
  • 录用日期:  2024-11-26
  • 网络出版日期:  2024-10-24
  • 刊出日期:  2024-11-08

目录

    /

    返回文章
    返回