Research on breaking process of 15 kV pyrobreaker
-
摘要: 超导托卡马克装置通过极高的磁场来约束高温等离子体,以实现可控核聚变反应。为了保证超导磁体的安全运行,失超保护系统中需要爆炸开关实现至关重要的后备保护。对15 kV爆炸开关中最关键的电流触头进行了建模,针对爆炸及触头开断过程进行了数值分析,计算了触头分断所需要的爆轰压力,以及爆炸产生的压力分布规律。通过试验验证了数值模拟的准确性,这为爆炸开关的理论设计提供了基础。Abstract: The superconducting tokamak device constrains high-temperature plasma through an extremely high magnetic field to achieve a controllable nuclear fusion reaction. To ensure the safe operation of the superconducting magnets, the quench protection system relies on pyrobreaker for critical backup protection. In this paper, the numerical model of current contacts in the 15 kV pyrobreaker has been established and the analysis is carried out for the contact breaking process. The detonation pressure required for contact separation and the pressure distribution law generated by the explosion are calculated. Furthermore, the accuracy of the numerical simulations is verified through experimental validation, providing a theoretical foundation for the design of pyrobreaker.
-
Key words:
- tokamak /
- superconducting magnets /
- quench /
- pyrobreaker /
- numerical analysis
-
表 1 RDX材料参数
Table 1. Material parameters of RDX
ρ/(g·cm−3) D/(cm·µs−1) pc-j/GPa A/GPa B/GPa R1 R2 ω E 1.63 0.839 34 581 6.8 4.1 1.0 0.35 9.0 表 2 铜的材料参数
Table 2. Material parameters of copper
ρ/(g·cm−3) G0/GPa A/MPa B/MPa n C m 8.96 47.7 900 292 0.31 0.025 1 表 3 钢的材料参数
Table 3. Material parameters of steel
material C/(m·s−1) S1 S2 S3 γ0 a steel 4569 1.49 0 0 2.17 0.46 表 4 环氧材料参数
Table 4. Material parameters of epoxy
parameter name value parameter name value parameter name value parameter name value E11 45.5 GPa Xc 680 MPa υ31 0.206 m1 4.0 E22 12.5 GPa Yc 250 MPa υ23 0.206 m2 4.0 E33 12.5 GPa Zt 82 MPa As 2.5 m3 4.0 G12 1.38 GPa Zc 242 MPa Bs 0.9 m4 4.0 G23 1.38 GPa S12 75 MPa Cs 0.37 m5 4.0 G31 1.38 GPa S23 58 MPa Am 1.85 m6 4.0 Xt 1.28 GPa S31 58 MPa Bm 0.5 m7 4.0 Yt 90 MPa υ12 0.25 Cm 1.3 Sc 1.2 表 5 试验压力与数值模拟对比
Table 5. Comparison of test pressure and numerical simulation
No. simulation pressure/MPa test pressure/MPa error/% 1 210 218.41 3.85 2 152.5 155.42 1.88 -
[1] 李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展[J]. 中国电机工程学报, 2016, 36(s1):233-239Li Hua, Song Zhiquan, Wang Shusheng, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device[J]. Proceedings of the CSEE, 2016, 36(s1): 233-239 [2] Wu Mingfu, Liu Zixi, Zhang Tao, et al. Experimental study of double tearing mode on EAST tokamak[J]. Plasma Science and Technology, 2020, 22: 025102. doi: 10.1088/2058-6272/ab4f8a [3] Yang Wenjun, Li Guoqiang, Gao Xiang, et al. Stability analysis of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak[J]. Fusion Science and Technology, 2023, 79(5): 528-536. doi: 10.1080/15361055.2022.2151279 [4] 宋执权, 傅鹏, 汤伦军, 等. EAST极向场电源失超保护系统的设计及模拟实验[J]. 核聚变与等离子体物理, 2007, 27(1):28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006Song Zhiquan, Fu Peng, Tang Lunjun, et al. Design of the quench protection system of the EAST PFPS and its simulation[J]. Nuclear Fusion and Plasma Physics, 2007, 27(1): 28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006 [5] Tang Cunwen, Song Zhiquan, Li Chuan, et al. Computational investigation on the explosively actuated switch utilized in quenching protection system[J]. Fusion Engineering and Design, 2021, 163: 112157. doi: 10.1016/j.fusengdes.2020.112157 [6] Tang Cunwen, Li Hua, Song Zhiquan, et al. Design and characterisation of the high-current DC breaker driven by explosive[J]. High Voltage, 2023, 8(3): 466-476. doi: 10.1049/hve2.12286 [7] Kamada Y, Barabaschi P, Ishida S, et al. Progress of the JT-60SA project[J]. Nuclear Fusion, 2013, 53: 104010. doi: 10.1088/0029-5515/53/10/104010 [8] Heshmati M, Zamani J, Mozafari A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7): 623-634. doi: 10.1002/mawe.201600510 [9] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42:053203 doi: 10.11883/bzycj-2021-0206Wen Yanbo, Hu Liangliang, Qin Jian, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion and Shock Waves, 2022, 42: 053203 doi: 10.11883/bzycj-2021-0206 [10] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020)[J]. 爆炸与冲击, 2021, 41:121401 doi: 10.11883/bzycj-2021-0113Yu Tongxi, Zhu Ling, Xu Jun. Progress in structural impact dynamics during 2010−2020[J]. Explosion and Shock Waves, 2021, 41: 121401 doi: 10.11883/bzycj-2021-0113 [11] Javier C, Galuska M, Papa M, et al. Underwater explosive bubble interaction with an adjacent submerged structure[J]. Journal of Fluids and Structures, 2021, 100: 103189. doi: 10.1016/j.jfluidstructs.2020.103189 [12] 翟希梅, 王永辉. 爆炸荷载下网壳结构的动力响应及泄爆措施[J]. 爆炸与冲击, 2012, 32(4):404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010Zhai Ximei, Wang Yonghui. Dynamic response and explosion relief of reticulated shell under blast loading[J]. Explosion and Shock Waves, 2012, 32(4): 404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010 [13] Souers P C, Minich R. Cylinder test correction for copper work hardening and spall[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 238-245. doi: 10.1002/prep.201400135 [14] 林大超, 白春华, 张奇. 空气中爆炸时爆炸波的超压函数[J]. 爆炸与冲击, 2001, 21(1):41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009Lin Dachao, Bai Chunhua, Zhang Qi. Overpressure functions of blast waves for explosions in air[J]. Explosion and Shock Waves, 2001, 21(1): 41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009 [15] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响[J]. 物理学报, 2013, 62:164601 doi: 10.7498/aps.62.164601Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62: 164601 doi: 10.7498/aps.62.164601 [16] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110: 033513. doi: 10.1063/1.3607294