Analysis of factors causing waveform oscillation in avalanche transistor-based Marx circuit
-
摘要: 基于雪崩晶体管的Marx电路常用于产生高压纳秒脉冲,输出波形通常具有前沿时间百ps量级、指数型放电后沿、kV级输出电压等特征。然而这种电路结构的典型输出波形后沿通常存在振荡或畸变;Marx电路的储能电容较大时,波形前沿还会出现尖峰振荡;已有研究对此关注较少或将其归因于电路杂散参数、阻抗匹配的影响。从雪崩晶体管动态导通过程的角度进行了仿真分析,并对储能电容取值、Marx电路级数、充电电压等因素的影响开展了实验研究。结果表明,雪崩晶体管自身过压导通状态是引起波形振荡的关键因素;储能电容越大、Marx级数越低、充电电压越小,则振荡的现象越明显,振荡幅值甚至能够高于晶体管雪崩击穿形成的快前沿尖峰,此时快前沿尖峰即体现为波形前沿上的振荡。通过调整Marx电路储能电容大小、优化微带线结构等方式可改善输出波形振荡。Abstract: The avalanche transistor-based Marx circuit is often used to generate high-voltage nanosecond pulses, its output waveform usually has a rising time about hundreds of picoseconds, an exponential discharging falling edge, and an output voltage in kV-level. However, the typical output waveform falling edge of this circuit structure usually has oscillation or distortion. Meanwhile, as long as the main capacitance of Marx circuit is large enough, the spike oscillation would emerge in the rising edge of the output waveform. Previous studies have paid less attention to this or attributed it to the influence of circuit stray parameters and impedance matching. In this paper, the simulation analysis was carried out from the perspective of the dynamic switching process of the avalanche transistor, and the influences of the main capacitor, the number of Marx circuit stages and the charging voltage were studied experimentally. The results show that the operating state of the avalanche transistor in voltage ramp mode caused the waveform oscillation. The oscillation would be more obvious when the circuit has larger main capacitance, fewer Marx stages and lower charging voltage. Moreover, the amplitude of the pulse oscillation could even be higher than the fast front edge, at this time, the fast front edge could be regarded as the spike oscillation in the output waveform rising edge. The output waveform oscillation can be reduced by adjusting the main capacitance of Marx circuit and optimizing the structure of microstrip line.
-
表 1 实测Marx电路中元器件选取类型及参数
Table 1. Package types and specific parameters of the Marx circuit in experiment
item package types specifications avalanche transistor surface mount SOT23 FMMT417 main capacitor surface mount 1808 /1812 18 pF~4.7 nF charging resistor surface mount 2512 10 kΩ trigger resistor surface mount 2512 750 Ω 表 2 储能电容取值不同的5级Marx电路输出波形参数
Table 2. Output characteristics of 5-stage Marx circuit under different main capacitance
main capacitance/pF charging voltage/V rising time/ps first peak amplitude/V amplitude/V width/ns 4700 270 338 323 963 44.34 4700 300 302 517 1090 42.86 1000 270 344 316 805 11.87 1000 300 293 518 937 11.37 100 270 392 245 359 3.13 100 300 271 436 457 2.77 56 270 392 242 242 2.51 56 300 266 426 426 2.10 33 270 394 196 196 1.03 33 300 280 368 368 1.38 18 270 627 91 91 2.15 18 300 325 260 260 0.74 表 3 储能电容取值不同的4级与20级Marx电路输出波形参数
Table 3. Output characteristics of 4/20-stage Marx circuit under different main capacitance
stage main capacitance/pF charging voltage/V rising time/ps first peak amplitude/V amplitude/V width/ns 4 4700 270 516 202 799 55.44 4 4700 300 370 340 914 53.30 4 1000 270 470 208 687 13.83 4 1000 300 375 356 793 13.43 4 100 270 547 172 326 2.84 4 100 300 387 312 390 2.98 4 56 270 585 148 238 2.60 4 56 300 426 267 267 2.46 4 33 270 694 134 157 2.24 4 33 300 376 207 207 2.07 4 18 270 662 21 72 2.39 4 18 300 313 128 128 1.58 20 4700 270 275 2039 2765 15.36 20 1000 270 239 1883 1883 6.07 表 4 不同级数Marx电路的输出波形参数(储能电容1.0 nF,充电电压300 V)
Table 4. Output characteristics of Marx circuits under different stages (main capacitance: 1.0 nF, charging voltage: 300 V)
stage rising time/ps amplitude/kV width/ns 10 257 1.50 6.79 15 262 2.00 5.77 20 286 2.42 5.99 25 309 2.60 4.89 30 309 2.89 4.42 35 306 3.27 3.80 40 319 3.40 3.45 45 326 3.56 3.46 50 320 3.65 3.21 -
[1] 赵政, 钟旭, 李征, 等. 基于雪崩三极管的高重频高压纳秒脉冲产生方法综述[J]. 电工技术学报, 2017, 32(8):33-47,54Zhao Zheng, Zhong Xu, Li Zheng, et al. Review on the methods of generating high-repetitive-frequency high-voltage nanosecond pulses based on avalanche transistors[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 33-47,54 [2] 梁琳, 颜小雪, 黄鑫远, 等. 半导体脉冲功率开关器件综述[J]. 中国电机工程学报, 2022, 42(23):8631-8651Liang Lin, Yan Xiaoxue, Huang Xinyuan, et al. Review on semiconductor pulsed power switching devices[J]. Proceedings of the CSEE, 2022, 42(23): 8631-8651 [3] Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2701-2707. doi: 10.1109/TPS.2010.2049662 [4] Gao Mingxiang, Xie Yanzhao, Wang Shaofei, et al. A portable ultrawideband electromagnetic radiator with a 1.4 MW/50 kHz solid-state subnanosecond pulser[J]. Review of Scientific Instruments, 2019, 90: 066102. doi: 10.1063/1.5094221 [5] 郭宝平, 牛憨笨. 雪崩晶体管的导通方式讨论[J]. 高速摄影与光子学, 1990, 19(4):386-390Guo Baoping, Niu Hanben. Avalanche transistor trigger modes[J]. High Speed Photography and Photonics, 1990, 19(4): 386-390 [6] Gao Mingxiang, Xie Yanzhao, Li Kejie, et al. Traveling-wave Marx circuit for generating repetitive sub-nanosecond pulses[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(4): 1271-1279. doi: 10.1109/TEMC.2019.2920508 [7] 袁雪林, 丁臻捷, 俞建国, 等. 基于雪崩管Marx电路的高稳定度脉冲技术[J]. 强激光与粒子束, 2010, 22(4):757-760 doi: 10.3788/HPLPB20102204.0757Yuan Xuelin, Ding Zhenjie, Yu Jianguo, et al. Research on high-stability pulser based on avalanche transistor Marx circuit[J]. High Power Laser and Particle Beams, 2010, 22(4): 757-760 doi: 10.3788/HPLPB20102204.0757 [8] Yuan Xuelin, Zhang Hongde, Bai Yang, et al. 4kV/30kHz short pulse generator based on time-domain power combining[C]//2010 IEEE International Conference on Ultra-Wideband. 2010: 1-4. [9] 袁雪林, 乔汉青, 浩庆松, 等. 触发脉冲对雪崩管脉冲源的影响[J]. 强激光与粒子束, 2016, 28:035004 doi: 10.11884/HPLPB201628.035004Yuan Xuelin, Qiao Hanqing, Hao Qingsong, et al. Influence of trigger pulse on pulse generator based on avalanche transistor[J]. High Power Laser and Particle Beams, 2016, 28: 035004 doi: 10.11884/HPLPB201628.035004 [10] Li Chengxiang, Wang Enzhao, Tan Jianwen, et al. Design and development of a compact all-solid-state high-frequency picosecond-pulse generator[J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3249-3256. doi: 10.1109/TPS.2018.2850153 [11] Gao Mingxiang, Xie Yanzhao, Wang Siqi, et al. A wideband picosecond pulsed electric fields (psPEF) exposure system for the nanoporation of biological cells[J]. Bioelectrochemistry, 2021, 140: 107790. doi: 10.1016/j.bioelechem.2021.107790 [12] He Renjie, Li Yang, Liu Zhennan, et al. Development of a high peak voltage picoseconds avalanche transistor based Marx bank circuit[J]. IEEE Access, 2021, 9: 64844-64851. doi: 10.1109/ACCESS.2021.3075960 [13] 张春艳, 赵青, 刘成林, 等. 探地雷达超宽带高斯脉冲信号源的设计[J]. 强激光与粒子束, 2013, 25(3):680-684 doi: 10.3788/HPLPB20132503.0680Zhang Chunyan, Zhao Qing, Liu Chenglin, et al. Design of ultra-wideband Gaussian pulse source for ground penetrating radar[J]. High Power Laser and Particle Beams, 2013, 25(3): 680-684 doi: 10.3788/HPLPB20132503.0680 [14] Guo Yilong, Yan Ningning, Guo Shenhui, et al. 500 ps/1 kV pulse generator based on avalanche transistor Marx circuit[C]//2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology. 2013: 296-299. [15] Li Chengxiang, Zhang Ruizhe, Yao Chenguo, et al. Development and simulation of a compact picosecond pulse generator based on avalanche transistorized Marx circuit and microstrip transmission theory[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1907-1913. doi: 10.1109/TPS.2016.2547944 [16] Li Chengxiang, Wang Enzhao, Yao Chenguo, et al. Compact solid-state Marx-bank sub-nanosecond pulse generator based on gradient transmission line theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2181-2188. doi: 10.1109/TDEI.2017.006367 [17] Vainshtein S N, Duan Guoyong, Filimonov A V, et al. Switching mechanisms triggered by a collector voltage ramp in avalanche transistors with short-connected base and emitter[J]. IEEE Transactions on Electron Devices, 2016, 63(8): 3044-3048. doi: 10.1109/TED.2016.2581320 [18] Duan Guoyong, Vainshtein S N, Kostamovaara J T. Modified high-power nanosecond Marx generator prevents destructive current filamentation[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7845-7850. doi: 10.1109/TPEL.2016.2632974 [19] Grekhov I V, Kardo-Sysoev A F, Kostina L S, et al. High-power subnanosecond switch[J]. Electronics Letters, 1981, 17: 422. doi: 10.1049/el:19810293 [20] Cheng Zhenbo, Ning Hui, Tang Chuanxiang, et al. Influence of avalanche transistor switching mode on waveform characteristics of solid-state pulse source[J]. Review of Scientific Instruments, 2023, 94: 104708. doi: 10.1063/5.0166719 [21] Li Jiangtao, Zhong Xu, Li Jianhao, et al. Theoretical analysis and experimental study on an avalanche transistor-based Marx generator[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3399-3405. doi: 10.1109/TPS.2015.2436373 [22] Shen Saikang, Yan Jiaqi, Wang Yanan, et al. Further investigations on a modified avalanche transistor-based Marx bank circuit[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8506-8513. doi: 10.1109/TIM.2020.2993343