留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷阴极真空开关导通特性研究综述

张自成 夏际炉 胡太壮 杨增辉 袁瑜岩 张昊冉 张慧博 杨汉武 张建德

张自成, 夏际炉, 胡太壮, 等. 冷阴极真空开关导通特性研究综述[J]. 强激光与粒子束, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332
引用本文: 张自成, 夏际炉, 胡太壮, 等. 冷阴极真空开关导通特性研究综述[J]. 强激光与粒子束, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332
Zhang Zicheng, Xia Jilu, Hu Taizhuang, et al. Review of study on conduction characteristics of vacuum switch based on cold cathode materials[J]. High Power Laser and Particle Beams, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332
Citation: Zhang Zicheng, Xia Jilu, Hu Taizhuang, et al. Review of study on conduction characteristics of vacuum switch based on cold cathode materials[J]. High Power Laser and Particle Beams, 2024, 36: 115001. doi: 10.11884/HPLPB202436.240332

冷阴极真空开关导通特性研究综述

doi: 10.11884/HPLPB202436.240332
基金项目: 国家自然科学基金项目(51677190) ;湖南省杰出青年基金项目(2017JJ1005)
详细信息
    作者简介:

    张自成,zczhang@nudt.edu.cn

    通讯作者:

    杨汉武,yanghw@nudt.edu.cn

  • 中图分类号: TL503

Review of study on conduction characteristics of vacuum switch based on cold cathode materials

  • 摘要: 对于空间环境应用的真空开关,可以省去人工环境下的开关密封结构和附属抽真空等设备,有效减轻体积重量,且具有真空环境天成、无需密封、绝缘强度高、恢复速度快等优点,在空间环境中有巨大的应用潜力。首先对国内外的真空开关导通特性研究进展进行了系统介绍,分析了多种类型真空开关的工作特性,评述其优缺点,并对自击穿型沿面闪络真空开关和触发型真空开关的导通机制进行了总结分析;其次分析了关于冷阴极材料的应用研究;然后概括介绍了本课题组在冷阴极真空开关方面的工作进展;最后探讨了冷阴极真空开关的发展趋势,为脉冲功率驱动源的空间环境应用奠定技术基础。
  • 图  1  场击穿型触发真空开关(左)和沿面闪络型触发真空开关(右)的基本结构

    Figure  1.  Basic structure of field-breakdown trigger vacuum switch (left) and surface flashover trigger vacuum switch (right)

    图  2  多棒极触发真空开关结构示意图

    Figure  2.  Structure schematic of multi-pole trigger vacuum switch

    图  3  激光触发真空开关实验装置示意图

    Figure  3.  Schematic of experimental setup for laser-trigger vacuum switch

    图  4  冷阴极真空开关实验系统布局

    Figure  4.  Layout of experimental setup of vacuum switch based on cold cathode material

    图  5  实验后的两种冷阴极和不锈钢阳极

    Figure  5.  Two kinds of cold cathode and stainless steel anode after experiments

    图  6  天鹅绒击穿前后放大不同倍数的微观样貌

    Figure  6.  Micro-structure of velvet before and after breakdown for different magnification times

    图  7  碳纤维击穿前后放大不同倍数的微观样貌

    Figure  7.  Micro-structure of carbon-fiber before and after breakdown for different magnification times

    图  8  不锈钢阳极击穿前后的表面元素对比

    Figure  8.  Comparison of surface elements of stainless steel anode before and after breakdown

    图  9  冷阴极材料的电子发射机制

    Figure  9.  Electron emission mechanism of cold cathode material

    图  10  碳纤维阴极的电压、电流和触发电压波形

    Figure  10.  Waveforms of voltage, current and trigger voltage for carbon-fiber cathode

    图  11  沿面闪络型触发真空开关的开通时间、延迟时间和工作电压的关系

    Figure  11.  Conduction time and delay time vs. operation voltage for flashover trigger vacuum switch

    表  1  多类型真空开关工作特性

    Table  1.   Operation characteristics of multi-types of vacuum switches

    switch type surface flashover TVS field-breakdown TVS multi-rod TVS laser TVS self-breakdown surface flashover VS
    initial plasma generation surface flashover trigger electrode surface flashover target material field enhancement
    working voltage tens of kV zero to tens of kV tens of kV several to tens of kV hundreds of kV
    working current tens to hundreds of kA tens of kA hundreds of kA tens to hundreds of kA several kA
    trigger condition low voltage high voltage high energy high energy high voltage
    trigger delay and jitter a dozen ns tens of ns several μs several ns sub-nanosecond
    advantages stable triggering;
    low triggering voltage;
    wide working voltage range;
    large through-current
    long life;
    large through-current;
    wide working voltage range
    large through-current;
    repetitive triggering;
    long life
    short trigger delay (ns);
    stable triggering;
    wide working voltage range
    high working voltage;
    long life;
    simple structure;
    fast rising edge
    disadvantages metal vapor deposition;
    trigger ablation;
    short trigger life
    high trigger energy;
    large trigger delay and dispersion (μs)
    high trigger energy;
    large trigger delay and dispersion;
    large volume
    metal vapor deposition;
    high stability requirements
    large voltage dispersion;
    dielectric degradation reduces working voltage
    下载: 导出CSV
  • [1] Mesyats G A. Pulsed power[M]. New York: Kluwer Academic/Plenum Publishers, 2005.
    [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005

    Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
    [3] 张明, 周亮, 栾小燕, 等. 面向脉冲功率技术需求的伪火花开关技术[J]. 真空电子技术, 2021(1):1-9

    Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Pseudo-spark switch technologies for pulsed power sources[J]. Vacuum Electronics, 2021(1): 1-9
    [4] 赵征, 周亮, 栾小燕, 等. 新型小体积伪火花开关研制[J]. 强激光与粒子束, 2023, 35:035002 doi: 10.11884/HPLPB202335.220290

    Zhao Zheng, Zhou Liang, Luan Xiaoyan, et al. Development of miniature pseudo-spark switch[J]. High Power Laser and Particle Beams, 2023, 35: 035002 doi: 10.11884/HPLPB202335.220290
    [5] 丁闻婧, 冯进军, 张明, 等. 辉光放电触发重频伪火花开关研究[J]. 强激光与粒子束, 2024, 36:055012 doi: 10.11884/HPLPB202436.240036

    Ding Wenjing, Feng Jinjun, Zhang Ming, et al. Study on glow discharge triggered repetitive frequency pseudospark switch[J]. High Power Laser and Particle Beams, 2024, 36: 055012 doi: 10.11884/HPLPB202436.240036
    [6] Baez A. Design considerations for high power spacecraft electrical systems[R]. E-661248, 2012.
    [7] Cunningham K, Carr J, Lewis B. MSFC electrical power systems for cubesats[R]. M18-7079, 2018.
    [8] 董华军, 吴延清, 向川, 等. 真空开关关键技术及发展趋势的分析[J]. 电气应用, 2008, 27(13):10-13

    Dong Huajun, Wu Yanqing, Xiang Chuan, et al. Analysis of key technologies and development trends of vacuum switches[J]. Electrotechnical Application, 2008, 27(13): 10-13
    [9] 夏胜国, 董曼玲, 何俊佳, 等. 场击穿式TVS时延特性的测量与分析[J]. 高电压技术, 2007, 33(9):167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037

    Xia Shengguo, Dong Manling, He Junjia, et al. Measurement and analysis of time delay characteristics of a field-breakdown triggered vacuum switches[J]. High Voltage Engineering, 2007, 33(9): 167-170,178 doi: 10.3969/j.issn.1003-6520.2007.09.037
    [10] 周正阳, 廖敏夫, 董华军, 等. 基于电子发射原理的场击穿型真空触发开关[J]. 电气应用, 2010, 29(17):76-80

    Zhou Zhengyang, Liao Minfu, Dong Huajun, et al. Vacuum trigger switch based on electron emission principle[J]. Electrotechnical Application, 2010, 29(17): 76-80
    [11] Boxman R I. Triggering mechanisms in triggered vacuum gaps[J]. IEEE Transactions on Electron Devices, 1997, 24(2): 122-128.
    [12] Lafferty J M. Triggered vacuum gaps[J]. Proceedings of the IEEE, 1966, 54(1): 23-32. doi: 10.1109/PROC.1966.4570
    [13] Kamakshaiah S, Rau R S N. Delay characteristics of a simple triggered vacuum gap[J]. Journal of Physics D: Applied Physics, 1975, 8: 1426. doi: 10.1088/0022-3727/8/12/014
    [14] Govinda Raju G R, Hackam R, Benson F A. Breakdown mechanisms and electrical properties of triggered vacuum gaps[J]. Journal of Applied Physics, 1976, 47(4): 1310-1317. doi: 10.1063/1.322832
    [15] 姚学玲, 陈景亮, 孙伟. 沿面闪络真空开关触发特性的实验研究[J]. 高电压技术, 2010, 36(2):340-344

    Yao Xueling, Chen Jingliang, Sun Wei. Experimental research on triggering characteristics of surface flashover triggered vacuum switch[J]. High Voltage Engineering, 2010, 36(2): 340-344
    [16] Chen Y G, Dethlefsen R, Crumley R, et al. High-coulomb triggered vacuum switch[C]//Proceedings of the Ninth IEEE International Pulsed Power Conference. 1993: 938.
    [17] Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum triggered switching devices[J]. IEEE Transactions on Magnetics, 2003, 39(1): 406-409. doi: 10.1109/TMAG.2002.807671
    [18] Zhou Zhengyang, Liao Minfu, Zou Jiyan, et al. Time delay of a field-breakdown triggered vacuum switch with flat electrodes[J]. Instruments and Experimental Techniques, 2011, 54(6): 803-807. doi: 10.1134/S0020441211060108
    [19] Zhou Zhengyang, Duan Xiongying, Liao Minfu, et al. Operational characteristics of a field-breakdown triggered vacuum switch[J]. IEEE Transactions on Magnetics, 2009, 45(1): 564-567. doi: 10.1109/TMAG.2008.2008830
    [20] Zhou Zhengyang, Zhao Liang, Sun Weizhen, et al. Arc development of triggered vacuum switch with multi-rod electrode system[J]. Instruments and Experimental Techniques, 2016, 59(1): 84-90. doi: 10.1134/S0020441215050152
    [21] 王延召. 多棒极型触发真空开关的关键问题及应用研究[D]. 武汉: 华中科技大学, 2014

    Wang Yanzhao. Research on the key problems and the applications of the triggered vacuum switch with multi-rod electrode system[D]. Wuhan: Huazhong University of Science and Technology, 2014
    [22] Makarevich A A, Rodichkin V A. A vacuum spark gap with laser firing[J]. Instrum Exp Tech, 1973: 1716-1720.
    [23] Harley L M, Barnes G A. Low-jitter, high-voltage, infrared, laser-triggered, vacuum switch[C]//Proceedings of the Eighth IEEE International Conference on Pulsed Power. 1991: 900-903.
    [24] Sullivan D L, Kovaleski S D, Hutsel B T, et al. Study of laser target triggering for spark gap switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 956-960. doi: 10.1109/TDEI.2009.5211839
    [25] 王珏, 邵建设, 严萍, 等. 激光触发真空沿面闪络开关的初步实验研究[J]. 强激光与粒子束, 2007, 19(6):1027-1030

    Wang Jue, Shao Jianshe, Yan Ping, et al. Experimental study on laser triggered surface flashover switch in vacuum[J]. High Power Laser and Particle Beams, 2007, 19(6): 1027-1030
    [26] 潘如政, 王珏, 严萍, 等. 真空中激光触发脉冲电压下绝缘材料闪络特性[J]. 强激光与粒子束, 2010, 22(3):671-674 doi: 10.3788/HPLPB20102203.0671

    Pan Ruzheng, Wang Jue, Yan Ping, et al. Laser-triggered flashover characteristics of insulations in vacuum condition under pulsed voltage[J]. High Power Laser and Particle Beams, 2010, 22(3): 671-674 doi: 10.3788/HPLPB20102203.0671
    [27] 陈伟民. 场击穿型激光触发真空开关的设计及研究[D]. 武汉: 华中科技大学, 2013: 5-15

    Chen Weimin. The design and research of a field-breakdown laser triggered vacuum switch[D]. Wuhan: Huazhong University of Science and Technology, 2013: 5-15
    [28] 蒋西平. 激光触发真空开关导通特性研究[D]. 大连: 大连理工大学, 2016: 5-25

    Jiang Xiping. Research on conduction characteristics of a laser triggered vacuum switch[D]. Dalian: Dalian University of Technology, 2016: 5-25
    [29] Smith I D. Test of a vacuum/dielectric surface flashover switch[R]. UCID-18553, 1980.
    [30] Zeng Bo, Su Jiancang, Cheng Jie, et al. A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research[J]. Review of Scientific Instruments, 2015, 86: 043302. doi: 10.1063/1.4916988
    [31] Zeng Bo, Su Jiancang, Zhang Xibo, et al. Investigation into the operating characteristics of fused quartz vacuum surface flashover switch[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 1999-2004. doi: 10.1109/TPS.2015.2389859
    [32] Krasik Y E, Dunaevsky A, Krokhmal A, et al. Emission properties of different cathodes at E≤105V/cm[J]. Journal of Applied Physics, 2001, 89(4): 2379-2399. doi: 10.1063/1.1337924
    [33] Garate E, Mcwilliams R D, Voss D E, et al. Novel cathode for field-emission applications[J]. Review of Scientific Instruments, 1995, 66(3): 2528-2532. doi: 10.1063/1.1146504
    [34] Liu Lie, Li Limin, Zhang Xiaoping, et al. Efficiency enhancement of reflex triode virtual cathode oscillator using the carbon fiber cathode[J]. IEEE Transactions on Plasma Science, 2007, 35(2): 361-368. doi: 10.1109/TPS.2007.893266
    [35] Liu Lie, Li Limin, Wen Jianchun, et al. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams[J]. Review of Scientific Instruments, 2009, 80: 023303. doi: 10.1063/1.3086728
    [36] Li Ankun, Fan Yuwei. Preliminary experimental study of a carbon fiber array cathode[J]. Journal of Applied Physics, 2016, 120: 065105. doi: 10.1063/1.4960699
    [37] Bugaev S P, Litvinov E A, Mesyats G A, et al. Explosive emission of electrons[J]. Soviet Physics Uspekhi, 1975, 18: 51. doi: 10.1070/PU1975v018n01ABEH004693
    [38] Miller R B. Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics, 1998, 84(7): 3880-3889. doi: 10.1063/1.368567
    [39] Adler R J, Kiuttu G F, Simpkins B E, et al. Improved electron emission by use of a cloth fiber cathode[J]. Review of Scientific Instruments, 1985, 56(5): 766-767. doi: 10.1063/1.1138169
    [40] Friedman M, Myers M, Hegeler F, et al. Emission of an intense large area electron beam from a slab of porous dielectric[J]. Journal of Applied Physics, 2004, 96(12): 7714-7722. doi: 10.1063/1.1815050
    [41] Krasik Y E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber(velvet) cathodes[J]. Journal of Applied Physics, 2005, 98: 093308. doi: 10.1063/1.2126788
    [42] 夏连胜, 张篁, 杨兴林, 等. 碳纤维阴极的场致发射特性实验研究[J]. 强激光与粒子束, 2007, 19(4):685-688

    Xia Liansheng, Zhang Huang, Yang Xinglin, et al. Experimental research on field emission of carbon fibe[J]. High Power Laser and Particle Beams, 2007, 19(4): 685-688
    [43] 夏连胜. 天鹅绒阴极强流多脉冲发射特性研究[D]. 绵阳: 中国工程物理研究院, 2005: 4-10

    Xia Liansheng. Study on high current multi-pulse emission characteristics of velvet cathode[D]. Mianyang: China Academy of Engineering Physics, 2005: 4-10
    [44] 刘列, 李立民, 文建春, 等. 碳纤维阴极的电子发射机制[J]. 强激光与粒子束, 2005, 17(8):1205-1209

    Liu Lie, Li Limin, Wen Jianchun, et al. Electron emission mechanism of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(8): 1205-1209
    [45] 邓潘, 张军, 葛行军, 等. 碳纤维阴极发射均匀性的实验研究[J]. 强激光与粒子束, 2005, 17(11):1721-1724

    Deng Pan, Zhang Jun, Ge Xingjun, et al. Experimental investigation on emission uniformity of carbon fiber cathode[J]. High Power Laser and Particle Beams, 2005, 17(11): 1721-1724
    [46] 李安昆. 大面积均匀发射、低出气率、长寿命碳纤维阵列阴极及其应用研究[D]. 长沙: 国防科技大学, 2021

    Li Ankun. Research on large- area, uniform emission, low outgassing rate, and long lifetime carbon fiber array cathode and its application[D]. Changsha: National University of Defense Technology, 2021
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  48
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-15
  • 修回日期:  2024-10-28
  • 录用日期:  2024-10-28
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回