留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率逆变式高压电源模块设计

蔡一鸣 张锦涛 夏于洋 李青 李春林

赵墨, 程引会, 吴伟, 等. 二极管负载电缆X射线辐照瞬态响应数值模拟[J]. 强激光与粒子束, 2013, 25: 490-494. doi: 10.3788/HPLPB20132502.0490
引用本文: 蔡一鸣, 张锦涛, 夏于洋, 等. 大功率逆变式高压电源模块设计[J]. 强激光与粒子束, 2025, 37: 035017. doi: 10.11884/HPLPB202537.240403
Zhao Mo, Cheng Yinhui, Wu Wei, et al. Numerical simulation for calculating transient response of coaxial line with diode to pulsed X-ray[J]. High Power Laser and Particle Beams, 2013, 25: 490-494. doi: 10.3788/HPLPB20132502.0490
Citation: Cai Yiming, Zhang Jintao, Xia Yuyang, et al. Design of high power density inverter-type high voltage power supply module[J]. High Power Laser and Particle Beams, 2025, 37: 035017. doi: 10.11884/HPLPB202537.240403

大功率逆变式高压电源模块设计

doi: 10.11884/HPLPB202537.240403
基金项目: 西物创新行动(202301XWCX002-04、202201XWCX002)
详细信息
    作者简介:

    蔡一鸣,caiyiming@swip.ac.cn

    通讯作者:

    夏于洋,xiayy@swip.ac.cn

  • 中图分类号: TM8

Design of high power density inverter-type high voltage power supply module

  • 摘要: 为解决中性束注入系统中加速极高压电源输出电压纹波低、打火时高压电源输出能量低、打火快速关断的需求,以及高压打火可能损坏高频开关器件的问题,采用模块化逆变式电源模块方案,设计了120 kV/80 A模块化大功率逆变式高压电源,该电源将84个1600 V/80 A的高频逆变式模块化电源错相级联。高频逆变式电源模块通过变压器隔离,可在打火时有效保护开关器件;采用逆变频率20 kHz的错相控制,在保证电压纹波的同时还可减小滤波电容的容量,满足打火能量限制的要求。最后仿真并搭建样机对模块性能进行测试,模块上升时间为67 µs;打火关断时间为3.3 µs;打火释放能量为1.3 J;电压纹波为3.3%,经交错级联后模块可以满足纹波低于1%。结果表明该设计满足电压纹波低、快速关断、低打火释放能量的要求,验证了设计方案的可行性。
  • 图  1  120 kV高功率密度逆变式高压电源主回路设计图

    Figure  1.  Main circuit design of 120 kV high power density inverter-type high voltage power supply

    图  2  高功率密度逆变式高压电源模块方案设计

    Figure  2.  Scheme design for high power density inverter-type high voltage power supply module

    图  3  单模块仿真结果

    Figure  3.  Single module simulation results

    图  4  短路波形

    Figure  4.  Short-circuit waveform

    图  5  ZVS软开关波形

    Figure  5.  ZVS soft switching waveform

    图  6  双模块仿真结果

    Figure  6.  Simulation results of phase-misaligned cascaded dual-module

    图  7  双模块纹波仿真

    Figure  7.  Double module ripple simulation

    图  8  逆变式高压电源模块测试平台

    Figure  8.  Inverter high voltage power supply module test platform

    图  9  开通测试波形

    Figure  9.  Turn-on test waveform

    图  10  纹波波形

    Figure  10.  Ripple waveform

    图  11  短路关断测试波形

    Figure  11.  Short circuit turn-off test waveform

    表  1  模块基本参数指标

    Table  1.   Basic parameter specifications of the module

    rated input voltage/V rated output voltage/V nominal power/kW switching frequency/kHz output voltage ripple short circuit protection time/µs
    600 (three-phase) 1600(DC) 128 20 5% ≤10
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    resonant inductance/nH resonant capacitor/µF switching frequency/kHz ratio of transformer filter inductance/μH filter capacitor/µF
    40 2.2 20 0.4 50 1
    下载: 导出CSV
  • [1] 马腾才, 胡希伟, 陈银华. 等离子体物理原理[M]. 2版. 合肥: 中国科学技术大学出版社, 2012: 287-296

    Ma Tengcai, Hu Xiwei, Chen Yinhua. Principles of plasma physics[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2012: 287-296
    [2] 曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展[J]. 强激光与粒子束, 2018, 30:106001 doi: 10.11884/HPLPB201830.180051

    Cao Jianyong, Wei Huiling, Liu He, et al. Latest progress of development of the neutral beam injection heating system on HL-2M Tokamak[J]. High Power Laser And Particle Beams, 2018, 30: 106001 doi: 10.11884/HPLPB201830.180051
    [3] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015

    Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in tokamaks[D]. Wuhan: Huazhong University of Science and Technology, 2015
    [4] Takahashi A, Tanaka T, Fujita H, et al. Development of –1 MV DC filter and high-voltage DC measurement systems for ITER NBI[J]. IEEJ Transactions on Power and Energy, 2018, 138(2): 166-174. doi: 10.1541/ieejpes.138.166
    [5] Kashiwagi M, Hiratsuka J, Ichikawa M, et al. 100 s negative ion accelerations for the JT-60SA negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2022, 62(2): 026025. doi: 10.1088/1741-4326/ac388a
    [6] 关志全. ICRH射频放大器电子管打火故障分析[D]. 衡阳: 南华大学, 2022

    Guan Zhiquan. Analysis of ignition failure of ICRH RF amplifier tube[D]. Hengyang: University of South China, 2022
    [7] 杨志刚, 张健, 黄懿赟, 等. 大功率高压直流电源输出短路故障的暂态分析[J]. 核聚变与等离子体物理, 2014, 34(4):355-360 doi: 10.3969/j.issn.0254-6086.2014.04.012

    Yang Zhigang, Zhang Jian, Huang Yiyun, et al. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply[J]. Nuclear Fusion and Plasma Physics, 2014, 34(4): 355-360 doi: 10.3969/j.issn.0254-6086.2014.04.012
    [8] 张鸿淇, 李志恒, 马少翔, 等. 中性束注入系统加速极电源高压部件设计[J]. 强激光与粒子束, 2024, 36:025011 doi: 10.11884/HPLPB202436.230159

    Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011 doi: 10.11884/HPLPB202436.230159
    [9] Ganuza D, Del Rı́o J M, Garcı́a I, et al. 130 kV 130 A high voltage switching mode power supply for neutral beam plasma heating: design issues[J]. Fusion Engineering and Design, 2003, 66/68: 615-620. doi: 10.1016/S0920-3796(03)00173-X
    [10] 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265

    Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265
    [11] 何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35:066002 doi: 10.11884/HPLPB202335.220355

    He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002 doi: 10.11884/HPLPB202335.220355
    [12] 王鹤, 褚渊, 黄堃, 等. 基于移相全桥的两级式交错并联DC/DC拓扑研究[J]. 电源技术, 2021, 45(3):386-390 doi: 10.3969/j.issn.1002-087X.2021.03.028

    Wang He, Chu Yuan, Huang Kun, et al. Principle and control of two-stage interleaving DC/DC topology based on phase-shift full bridge converter[J]. Chinese Journal of Power Sources, 2021, 45(3): 386-390 doi: 10.3969/j.issn.1002-087X.2021.03.028
    [13] 许章茁, 潘健. 移相全桥ZVS直流变换器研究综述[J]. 电源学报, 2022, 20(4):11-27

    Xu Zhangzhuo, Pan Jian. Review of research on phase-shifted full-bridge ZVS DC-DC converter[J]. Journal of Power Supply, 2022, 20(4): 11-27
    [14] 夏于洋, 李青, 毛晓惠, 等. PSM高压电源系统模块的计算分析[J]. 核聚变与等离子体物理, 2021, 41(1):56-60

    Xia Yuyang, Li Qing, Mao Xiaohui, et al. Calculation and analysis of PSM high voltage power system module[J]. Nuclear Fusion and Plasma Physics, 2021, 41(1): 56-60
    [15] 许章茁. 移相全桥软开关直流变换器研究[D]. 武汉: 湖北工业大学, 2020

    Xu Zhangzhuo. Research on phase-shifted full-bridge ZVS DC-DC converter[D]. Wuhan: Hubei University of Technology, 2020
    [16] 李亚维, 谢敏, 蓝欣, 等. 200 kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28:015016 doi: 10.11884/HPLPB201628.015016

    Li Yawei, Xie Min, Lan Xin, et al. A 200 kV high voltage DC power supply with high stability and low ripple[J]. High Power Laser and Particle Beams, 2016, 28: 015016 doi: 10.11884/HPLPB201628.015016
    [17] 杨文铁, 耿攀, 欧阳辉, 等. 死区时间对移相全桥电路ZVS实现的影响[J]. 电力电子技术, 2013, 47(7):20-21 doi: 10.3969/j.issn.1000-100X.2013.07.007

    Yang Wentie, Geng Pan, Ouyang Hui, et al. The effect of dead-time to ZVS phase-shifted full-bridge circuit[J]. Power Electronics, 2013, 47(7): 20-21 doi: 10.3969/j.issn.1000-100X.2013.07.007
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  42
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 修回日期:  2025-01-14
  • 录用日期:  2025-01-14
  • 网络出版日期:  2025-02-21
  • 刊出日期:  2025-03-15

目录

    /

    返回文章
    返回