Design of high power density inverter-type high voltage power supply module
-
摘要: 为解决中性束注入系统中加速极高压电源输出电压纹波低、打火时高压电源输出能量低、打火快速关断的需求,以及高压打火可能损坏高频开关器件的问题,采用模块化逆变式电源模块方案,设计了120 kV/80 A模块化大功率逆变式高压电源,该电源将84个
1600 V/80 A的高频逆变式模块化电源错相级联。高频逆变式电源模块通过变压器隔离,可在打火时有效保护开关器件;采用逆变频率20 kHz的错相控制,在保证电压纹波的同时还可减小滤波电容的容量,满足打火能量限制的要求。最后仿真并搭建样机对模块性能进行测试,模块上升时间为67 µs;打火关断时间为3.3 µs;打火释放能量为1.3 J;电压纹波为3.3%,经交错级联后模块可以满足纹波低于1%。结果表明该设计满足电压纹波低、快速关断、低打火释放能量的要求,验证了设计方案的可行性。Abstract: To address issues of low output voltage ripple, low ignition energy, rapid shutdown, and to reduce the risk of high-voltage ignition damaging high-frequency switching devices in neutral beam injection systems, this paper proposes a modular inverter-type power supply design. A 120 kV/80 A high-power modular inverter is developed. It incorporates 84 high-frequency inverter modules (1600 V/80 A each) in a staggered-phase cascade. Transformer isolation of each module safeguards switching devices during ignition, and 20 kHz staggered phase control minimizes filter capacitor requirements while maintaining voltage ripple within specifications. Performance tests on the prototype show a rise time of 67 μs, turn-off time of 3.3 μs, ignition energy release of 1.3 J, and voltage ripple of 3.3%, with the ripple reduced to less than 1% after interleaving. The results demonstrate that the design achieves low voltage ripple, fast shutdown, and controlled energy release, confirming its feasibility-
Key words:
- high voltage power supply /
- modularization /
- high frequency /
- misalignment /
- low ripple
-
表 1 模块基本参数指标
Table 1. Basic parameter specifications of the module
rated input voltage/V rated output voltage/V nominal power/kW switching frequency/kHz output voltage ripple short circuit protection time/µs 600 (three-phase) 1600 (DC)128 20 5% ≤10 表 2 仿真参数
Table 2. Simulation parameters
resonant inductance/nH resonant capacitor/µF switching frequency/kHz ratio of transformer filter inductance/μH filter capacitor/µF 40 2.2 20 0.4 50 1 -
[1] 马腾才, 胡希伟, 陈银华. 等离子体物理原理[M]. 2版. 合肥: 中国科学技术大学出版社, 2012: 287-296Ma Tengcai, Hu Xiwei, Chen Yinhua. Principles of plasma physics[M]. 2nd ed. Hefei: University of Science and Technology of China Press, 2012: 287-296 [2] 曹建勇, 魏会领, 刘鹤, 等. HL-2M装置中性束注入加热系统研制进展[J]. 强激光与粒子束, 2018, 30:106001 doi: 10.11884/HPLPB201830.180051Cao Jianyong, Wei Huiling, Liu He, et al. Latest progress of development of the neutral beam injection heating system on HL-2M Tokamak[J]. High Power Laser And Particle Beams, 2018, 30: 106001 doi: 10.11884/HPLPB201830.180051 [3] 夏令龙. 托卡马克辅助加热系统高压电源若干关键技术研究[D]. 武汉: 华中科技大学, 2015Xia Linglong. The study on several key techniques of high voltage power supply for auxiliary heating system in tokamaks[D]. Wuhan: Huazhong University of Science and Technology, 2015 [4] Takahashi A, Tanaka T, Fujita H, et al. Development of –1 MV DC filter and high-voltage DC measurement systems for ITER NBI[J]. IEEJ Transactions on Power and Energy, 2018, 138(2): 166-174. doi: 10.1541/ieejpes.138.166 [5] Kashiwagi M, Hiratsuka J, Ichikawa M, et al. 100 s negative ion accelerations for the JT-60SA negative-ion-based neutral beam injector[J]. Nuclear Fusion, 2022, 62(2): 026025. doi: 10.1088/1741-4326/ac388a [6] 关志全. ICRH射频放大器电子管打火故障分析[D]. 衡阳: 南华大学, 2022Guan Zhiquan. Analysis of ignition failure of ICRH RF amplifier tube[D]. Hengyang: University of South China, 2022 [7] 杨志刚, 张健, 黄懿赟, 等. 大功率高压直流电源输出短路故障的暂态分析[J]. 核聚变与等离子体物理, 2014, 34(4):355-360 doi: 10.3969/j.issn.0254-6086.2014.04.012Yang Zhigang, Zhang Jian, Huang Yiyun, et al. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply[J]. Nuclear Fusion and Plasma Physics, 2014, 34(4): 355-360 doi: 10.3969/j.issn.0254-6086.2014.04.012 [8] 张鸿淇, 李志恒, 马少翔, 等. 中性束注入系统加速极电源高压部件设计[J]. 强激光与粒子束, 2024, 36:025011 doi: 10.11884/HPLPB202436.230159Zhang Hongqi, Li Zhiheng, Ma Shaoxiang, et al. Design of high-voltage components for acceleration grid power supply of neutral beam injection system[J]. High Power Laser and Particle Beams, 2024, 36: 025011 doi: 10.11884/HPLPB202436.230159 [9] Ganuza D, Del Rı́o J M, Garcı́a I, et al. 130 kV 130 A high voltage switching mode power supply for neutral beam plasma heating: design issues[J]. Fusion Engineering and Design, 2003, 66/68: 615-620. doi: 10.1016/S0920-3796(03)00173-X [10] 张明, 周澜, 王姝, 等. 基于负离子的中性束注入器加速极逆变型高压电源控制策略[J]. 强激光与粒子束, 2019, 31:040012 doi: 10.11884/HPLPB201931.180265Zhang Ming, Zhou Lan, Wang Shu, et al. Control strategy for inverter type high voltage power supply for negative-ion based neutral beam injector[J]. High Power Laser and Particle Beams, 2019, 31: 040012 doi: 10.11884/HPLPB201931.180265 [11] 何开心, 李青, 夏于洋, 等. 基于200 kV/15 A逆变型直流高压电源的控制策略[J]. 强激光与粒子束, 2023, 35:066002 doi: 10.11884/HPLPB202335.220355He Kaixin, Li Qing, Xia Yuyang, et al. Direct current high voltage power control strategy based on 200 kV/15 A inverter[J]. High Power Laser and Particle Beams, 2023, 35: 066002 doi: 10.11884/HPLPB202335.220355 [12] 王鹤, 褚渊, 黄堃, 等. 基于移相全桥的两级式交错并联DC/DC拓扑研究[J]. 电源技术, 2021, 45(3):386-390 doi: 10.3969/j.issn.1002-087X.2021.03.028Wang He, Chu Yuan, Huang Kun, et al. Principle and control of two-stage interleaving DC/DC topology based on phase-shift full bridge converter[J]. Chinese Journal of Power Sources, 2021, 45(3): 386-390 doi: 10.3969/j.issn.1002-087X.2021.03.028 [13] 许章茁, 潘健. 移相全桥ZVS直流变换器研究综述[J]. 电源学报, 2022, 20(4):11-27Xu Zhangzhuo, Pan Jian. Review of research on phase-shifted full-bridge ZVS DC-DC converter[J]. Journal of Power Supply, 2022, 20(4): 11-27 [14] 夏于洋, 李青, 毛晓惠, 等. PSM高压电源系统模块的计算分析[J]. 核聚变与等离子体物理, 2021, 41(1):56-60Xia Yuyang, Li Qing, Mao Xiaohui, et al. Calculation and analysis of PSM high voltage power system module[J]. Nuclear Fusion and Plasma Physics, 2021, 41(1): 56-60 [15] 许章茁. 移相全桥软开关直流变换器研究[D]. 武汉: 湖北工业大学, 2020Xu Zhangzhuo. Research on phase-shifted full-bridge ZVS DC-DC converter[D]. Wuhan: Hubei University of Technology, 2020 [16] 李亚维, 谢敏, 蓝欣, 等. 200 kV低纹波高稳定度直流高压电源[J]. 强激光与粒子束, 2016, 28:015016 doi: 10.11884/HPLPB201628.015016Li Yawei, Xie Min, Lan Xin, et al. A 200 kV high voltage DC power supply with high stability and low ripple[J]. High Power Laser and Particle Beams, 2016, 28: 015016 doi: 10.11884/HPLPB201628.015016 [17] 杨文铁, 耿攀, 欧阳辉, 等. 死区时间对移相全桥电路ZVS实现的影响[J]. 电力电子技术, 2013, 47(7):20-21 doi: 10.3969/j.issn.1000-100X.2013.07.007Yang Wentie, Geng Pan, Ouyang Hui, et al. The effect of dead-time to ZVS phase-shifted full-bridge circuit[J]. Power Electronics, 2013, 47(7): 20-21 doi: 10.3969/j.issn.1000-100X.2013.07.007 -