Calculation and simulation on mid-spatial frequency error in continuous polishing
-
摘要: 通过建立环形抛光的去除模型,从理论上分析了转速比、槽形、元件摆动对于抛光结果的影响,并分析了中频误差产生的原因。模拟结果表明:转速比的差异会产生较大的低频误差,而中频误差会随着低频误差的降低而降低;槽形是中频误差的主要来源,复杂的非对称不规律槽形使抛光路径复杂化,降低中频误差;同时元件的小幅度摆动能够使抛光更加均匀,减小定心式抛光造成的元件表面规则状纹路结构,从而有效减小元件的中频误差。Abstract: Based on theoretical model of continuous polishing, the influence of processing parameters on the polishing result was discussed. Possible causes of mid-spatial frequency error in the process were analyzed. The simulation results demonstrated that the low spatial frequency error was mainly caused by large rotating ratio. The mid-spatial frequency error would decrease as the low spatial frequency error became lower. The regular groove shape was the primary reason of the mid-spatial frequency error. When irregular and fitful grooves were adopted, the mid-spatial frequency error could be lessened. Moreover, the workpiece swing could make the polishing process more uniform and reduce the mid-spatial frequency error caused by the fix-eccentric plane polishing.
-
Key words:
- continuous polishing /
- mid-spatial frequency error /
- simulation /
- rotating ratio /
- groove shape
点击查看大图
计量
- 文章访问数: 1216
- HTML全文浏览量: 210
- PDF下载量: 367
- 被引次数: 0