(1+2)维空间光孤子在非局域克尔介质中的传输特性
Propagation properties of (1+2) dimension spatial optical solitons in nonlocal Kerr medium
-
摘要: 从非局域非线性薛定谔方程出发,采用分步傅里叶算法数值讨论了在一定的非局域程度条件下,(1+2)维空间光孤子的传输特性, 数值求解了光孤子各特性参量。假定非局域克尔介质的响应函数为高斯型,得出了在一定的非局域程度条件下空间光孤子的数值解,并数值证明了它们的稳定性。结果表明:(1+2)维光孤子对非局域程度依赖性很强。在一定的非局域程度下,光束能以光孤子态在非局域克尔介质中稳定传输。强非局域时,光孤子的波形是高斯型,其它的非局域程度下,不是高斯型。当非局域程度较弱时,不存在孤子解。
-
关键词:
- 空间光孤子 /
- 非局域非线性薛定谔方程 /
- 非局域克尔介质 /
- 临界功率 /
- 相位
Abstract: Started from the nonlocal nonlinear Schrdinger equation, the split-step method was used to numerically discuss propogation properies of (1+2) dimension spatial optical sotions with definite degrees of nonlocality, and a set of parameters of soliton were obtained. Assuming the response function for nonlocal Kerr medium is a Gaussian function, the numerical solutions of solitons were analyzed and the soliton’s stability was proved numerically with definite degrees of nonlocality. Results show that (1+2) dimension solitons depend strongly on the degrees of nonlocality. The optical beam can propagate stably with definite degrees of nonlocality. The soliton profile is Gaussian-shaped for strongly nonlocal cases, but not Gaussian-shaped for any other cases. When the degrees of nonlocality are
点击查看大图
计量
- 文章访问数: 2742
- HTML全文浏览量: 327
- PDF下载量: 419
- 被引次数: 0