辛格式在强激光场一维模型问题计算中的应用
Symplectic scheme in computing the one-dimensional model of strong laser field
-
摘要: 将辛算法推广到复辛空间,指出了辛算法保定态Schr-dinger方程的Wronskian守恒。将辛算法应用于强场一维模型的计算中,并与Runge-Kutta法作了比较。结果显示,辛算法保持定态Schr-dinger方程的Wronskian守恒,适合于在充分 远空间上计算线性无关解,是计算强激光场一维模型的合理的数值方法。Abstract: The symplectic algorithm of Hamiltonian system is extended to the complex symplectic space. The numerical solutions of the 1-dimensional model of strong field are calculated by means of both symplectic and Runge-Kutta algorithms. The results show that the symplectical gorithm preserves the Wronskian, which is in good agreement with theoretical analyses, but the Wronskian calculated by using the Runge-Kutta algorithm increases rapidly after a long distance of computation. Therefore the symplectic algorit hm is a better algorithm for the calculations of the 1-dimensional model of strong field.
-
Key words:
- wronskian /
- strong field /
- canonical equation /
- symplectic algorithm
点击查看大图
计量
- 文章访问数: 1960
- HTML全文浏览量: 244
- PDF下载量: 491
- 被引次数: 0