重频激光作用下碳纤维/环氧树脂复合材料热损伤规律
Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser
-
摘要: 运用热化学分析、扫描电子显微技术等手段,分析了碳纤维增强环氧树脂基复合材料在ms量级重频激光辐照下的损伤形式,研究了峰值功率密度、辐照时间、重复频率和脉冲宽度等对复合材料烧蚀规律的影响。研究结果表明:在激光辐照过程中,复合材料树脂基体在300 ℃开始裂解;由于裂解气体的保护作用,碳纤维不发生氧化,而是在汽化点(3 300 ℃)汽化烧蚀;复合材料热烧蚀率随峰值功率密度和重复频率提高而增大,随辐照时间增加而减小,最终均趋于定值;增加脉冲宽度可以提高辐照区峰值温度,降低碳纤维损伤的功率密度阈值。Abstract: In this paper, the ablation mechanisms of carbon fiber reinforced E-51 epoxy composite irradiated by repetition frequency laser whose wavelength was 1 064 nm were studied, and the effects of maximum power density, irradiation time, frequency and pulse width on the thermal ablation rate were discussed. The thermal analysis results indicate that the resin matrix begins to ablate while the temperature of the composite surface reaches the pyrolysis temperature, which is as low as 300 ℃. The ablation of carbon fiber is caused by vaporization when the temperature reaches vaporization point, while the avoidance of carbon oxidation is attributed to the protection of pyrolysis gas. With the maximum power density or frequency increasing, the thermal ablation rate raises at first and then tends to a
点击查看大图
计量
- 文章访问数: 2659
- HTML全文浏览量: 371
- PDF下载量: 906
- 被引次数: 0