高精度有限差分法模拟Kelvin-Helmholtz不稳定性
Simulation of Kelvin-Helmholtz instability with high-order finite difference method
-
摘要: WENO有限差分格式有较高的分辨精度,适合复杂流场的计算,在国际上被广泛采用。本文利用WENO有限差分格式求解2维守恒型欧拉方程,实现了对无粘流体中Kelvin-Helmholtz不稳定性的数值模拟。速度剪切方向采用周期边界条件;扰动增长方向采用嵌边出流边界条件,一个不稳定波长分布64个网格。数值模拟给出的扰动幅值线性增长率与线性稳定性分析给出的结果很好符合,显示了该格式的有效性和精度。数值模拟给出了清晰的密度等值线,表明该方法还具有较好的界面变形捕捉能力。
-
关键词:
- Kelvin-Helmholtz不稳定性 /
- 高精度有限差分法 /
- WENO格式 /
- 欧拉方程
Abstract: The Kelvin-Helmholtz instability in the inviscid fluid was simulated by applying high-order weighted essentially non-oscillatory(WENO) scheme to solve the two-dimensional conservative Euler equations. The simulation adopted the periodic boundary condition for the velocity shear direction and the fringe method as the outflow boundary condition for the disturbance growth direction, where an unstable wavelength contained 64 grids. The linear growth rate of the disturbance amplitude derived from this numerical simulation agrees well with that from the linear stability analysis, which proves the validity and accuracy of the simulation method. The method can provide clear density contours, showing a good capturing ability of interface deformation.
点击查看大图
计量
- 文章访问数: 2541
- HTML全文浏览量: 237
- PDF下载量: 407
- 被引次数: 0