利用自相关函数与平稳小波变换的252Cf源驱动核材料质量识别方法
252Cf-source driven identification method for mass of fissile material based on autocorrelation function and stationary wavelet transform
-
摘要: 以252Cf中子源驱动噪声分析测量法为依据,利用中子脉冲信号自相关函数与被测核材料(252U)质量的关系,设计了一种基于神经网络的核材料质量识别方法,探索借助时域特征进行质量识别的有效性。利用平稳小波变换抑制中子统计涨落对自相关函数带来的影响,利用分布式Elman神经网络对不同质量核材料的自相关函数样本进行训练和识别,并研究了有限样本前提下不同子网个数对最终识别结果所造成的影响。对4种核材料质量共计120组样本进行的实验,结果表明:在理想实验条件下,平稳小波变换抑制了统计涨落对信号自相关函数的影响;分布式Elman神经网络能够较好地识别自相关函数的特征,分辨不同质量的核材料,平均识别误差小于0.1。
-
关键词:
- 252Cf中子源驱动噪声分析法 /
- 核材料识别 /
- 自相关函数 /
- 神经网络 /
- 平稳小波变换
Abstract: According to the relationship between the autocorrelation function of neutron pulse signal and the mass of fissile material (252U), this paper proposes an identification method for the mass of fissile material by means of artificial neural network and stationary wavelet transform. In order to suppress the “noise effect” of autocorrelation function due to statistical fluctuation of neutron signal, the wavelet approximation subband of the 2nd level is extracted after the autocorrelation function is decomposed, and the subband coefficients of different mass are reused as the input variables of distributed Elman neural network for training and recognizing. The impact of the number of subnetworks is also studied. The experimental results show that, under an ideal condition (4 kinds of mass a
点击查看大图
计量
- 文章访问数: 2006
- HTML全文浏览量: 253
- PDF下载量: 416
- 被引次数: 0