射流式水冷镜换热性能及在高能化学激光器中的应用
Heat transfer performance of water jet cooled mirror and its application in high power chemical lasers
-
摘要: 加工了射流式水冷铜镜模型,采用红外热像仪测量了冷却过程中镜面温度分布云图,证明了射流式水冷镜冷却的均匀性。采用热电偶较精确地测量了铜镜冷却过程中镜面温度的变化,实验结果与数值模拟吻合较好,验证了射流式水冷镜数值模型的可靠性。结合高能化学激光器中水冷镜实际情况,对直线沟槽型水冷镜和射流式水冷镜的形变特性进行了分析。计算结果表明,高能化学激光器水冷镜必须承压加工才能使用,射流式水冷镜可以很好地应用于高能化学激光器。此外,进一步分析了冷却孔直径和数量这两个参数对大口径射流式水冷镜形变的影响,结果表明:在孔数一定的情况下,采用更大口径的冷却孔,镜面冷却速度快、镜面最大温度低,可以获得更小的镜面形变;采用更多的冷却孔可以获得更好的冷却效果。Abstract: The test model of water jet cooled copper mirror was made and temperature measurement of the mirror was carried out. The temperature uniformity of the water jet cooled copper mirror was proved by the measurements of infrared camera and experimental results of thermocouples agree well with the results of numerical simulation, which verified the reliability of the numerical model. The deformation characteristics of the water jet cooled mirror and the linear-channel water cooled mirror were analyzed in the scenario of high power chemical lasers. The results show that the water jet cooled mirror can be well used in high power chemical lasers and the mirror must be processed under certain pressure. In addition,the diameter and number of cooling holes were further analyzed to explore their effects on the deformation of water jet cooled mirror in high power chemical lasers. More holes with larger diameter lead to better cooling effects.
-

计量
- 文章访问数: 1777
- HTML全文浏览量: 185
- PDF下载量: 479
- 被引次数: 0