Characteristics of nanosecond-pulse atmospheric pressure plasma jet
-
摘要: 采用单针式电极,使用单极性重复频率脉冲电源,在常压氦气、氩气、氮气和空气中得到等离子体射流,并改变电压、流量和气体种类,分别观察不同的实验条件对等离子体射流的影响。实验结果表明:射流长度随施加电压的增加而增长;随着流量的连续变化,射流长度先逐渐变长,达到峰值后由于湍流影响,长度又逐渐缩短,达到一定流量后趋于饱和。此外,不同工作气体中的等离子体射流呈现截然不同的外观,氦气和氩气中射流呈针状模式,长度可达7 cm以上;而在氮气和空气中,射流呈现为长度不超过2 cm的刷状模式。Abstract: In the experiments, with the use of a single needle electrode, atmospheric pressure plasma jets are excited by a repetitive unipolar nanosecond-pulse generator, with working gases such as helium, argon, nitrogen and air. The results show that the jet length increases with the rise of applied voltage; as the flow rate of working gas increases, the length of jet becomes gradually longer and then reduces gradually to saturation after a certain flow rate due to turbulence. In addition, the plasma jets of different working gases have very different appearances. Helium and argon gas jets are needle-like, and the longest jet length is over 7 cm; whereas in nitrogen and in air, the jet is no more than 2 cm long, of brush-like mode.
点击查看大图
计量
- 文章访问数: 2070
- HTML全文浏览量: 270
- PDF下载量: 776
- 被引次数: 0