Maximum likelihood discrete spectral peak estimation in coherent wind lidar and Monte Carlo simulation
-
摘要: 相干测风激光雷达中一个核心的问题是从微弱的气溶胶后向散射信号中估计出风速。基于零均值复高斯随机过程协方差矩阵统计模型的后向散射信号,首先讨论了最大似然(ML)离散谱峰值(DSP)风速估计算法的克拉美-罗下界(CRLB)与由Fisher信息矩阵论得到的精确CRLB之间的关系。其次,对于ML DSP估计应用于相干测风激光雷达中协方差矩阵统计模型的后向散射信号时,使用计算机Monte Carlo仿真的方法研究了风速估计的概率密度函数。分别讨论了信噪比、激光脉冲累积发数和发射激光脉冲宽度对ML DSP风速估计性能的影响。计算仿真结果表明:ML DSP风速估计的CRLB低于精确的CRLB;在信噪比为-20 dB,100发激光脉冲累积和信噪比为-30 dB,10 000发激光脉冲累积条件下,ML DSP风速估计中坏的估计值所占的比例都为0,好的估计值的标准差分别为0.62 m/s和0.50 m/s。Abstract: Estimation of the wind velocity from weak aerosol backscattering signals is a key problem in the coherent wind lidar. The Cramer-Rao lower bound (CRLB) of the maximum likelihood (ML) discrete spectral peak (DSP) estimation is discussed based on the statistical model of the covariance matrix of zero mean complex Gaussian random process of the backscattering signal. The CRLBs of both the ML DSP and Fisher information matrix are compared. On the condition of the covariance matrix statistical model of the backscattering signals in coherent wind lidar, the performance of the ML DSP estimation is examined by employing the computer Monte Carlo simulations, and the probability density function of the estimations of the wind velocity is researched as well. The effects of signal-to-noise ratio, the accumulation number of the laser pulse as well as pulse width of the outgoing laser pulse on ML DSP wind velocity estimations are illustrated respectively. The calculation and simulation results show that, (1)The CRLB of the ML DSP estimation is lower than the exact CRLB from Fisher information matrix; (2)Both of the fractions of the bad estimations are 0, and the standard deviations of the good estimations are 0.62 m/s and 0.50 m/s, respectively, for SNR of -20 dB and 100 laser pulses accumulation and SNR of -30 dB and 10 000 laser pulses accumulation.
点击查看大图
计量
- 文章访问数: 1606
- HTML全文浏览量: 356
- PDF下载量: 395
- 被引次数: 0