Finite element analysis of subcritical energy blanket for uranium-based fusion-fission hybrid reactor
-
摘要: 次临界能源包层是聚变-裂变混合堆的重要部件,对其进行力学特性分析研究是确保整个反应堆正常运行的关键。本文利用有限元分析软件对次临界能源包层的第一壁结构、支撑固定结构的相关零部件开展了初步的力学分析,得到了各零部件相关结构的最大应力值、应力分布云图和变形分布云图,其中支撑结构的最大应力位于加强筋板与圆柱定位销的连接处,应力值为310.2 MPa;第一壁的最大应力位于“U”形流道拐角处,应力值为240.7 MPa;按相应的评价准则进行结构的强度和刚度校核,计算结果表明次临界能源包层各零部件能够满足计算工况下的强度和刚度要求。Abstract: The subcritical energy blanket is an important component of the fusion-fission hybrid reactor. The mechanical characteristic analysis of the subcritical energy blanket is the key to ensure the normal operation of the whole reactor. In this paper, the preliminary mechanical analysis for the parts including the first wall and the support structure of the subcritical energy blanket is carried out. Accordingly, the maximal stress value, the stress distribution contours and the deformation distribution contours are obtained. The maximal stress of the support structure is located at the connection between the stiffener and the cylindrical pin and the value is 310.2 MPa. The maximal Tresca stress of the first wall is located at the corner of the U shaped flow channel and the value is 240.7 MPa. In the light of the strength and stiffness norms, the calculation results show that the structure of the subcritical energy blanket can satisfy the strength and stiffness requirements.
-
表 1 计算用材料力学性能参数
Table 1. Material parameters used in calculation
material density ρ/(kg·m-3) Young’s modulus E/MPa Poisson’s ratio μ thermal expansion coefficient/(μm/m℃) SS316L 7870 1.9×105 0.29 19.9 ZIRLO 6440 0.98×105 0.33 6.30 U-10Zr 13300 1.6×105 0.24 5.63 RAFM 7870 2.0×105 0.27 11.9 表 2 包层各零部件的许用应力
Table 2. Allowable stress of blanket parts
material temperature/K stress allowable stress/MPa σ 531 SS316L 500 Pm 177 Pm+Pb 265 σ 930 ZIRLO 500 Pm 310 Pm+Pb 465 U-10Zr 500 σ 309 σ 1134 RAFM 500 Pm 378 Pm+Pb 567 -
[1] Aymar R. Technical basis for the ITER-FEAT outline design[Z]. ITER EDA Documentation Series No19, IAEA, Vienna, 2000. [2] Boccaccini L V, Bekris N, Chen Y, et al. Designdescription document for the European helium cooled pebble bed (HCSB) test blanket modules[R]. ITER FEAT Final Design Repert, Karlsruhe, 2001. [3] 邱励俭. 聚变能及其应用[M]. 北京: 科学出版社, 2008, 1-10.Qiu Lijian. Fusion energy and its application. Beijing: Science Press, 2008: 1-10 [4] 刘志勇, 曾和荣, 钱达志, 等. ITER驱动混合堆次临界包层燃料区结构设计与分析[J]. 强激光与粒子束, 2015, 27: 046001. doi: 10.11884/HPLPB201527.046001Liu Zhiyong, Zeng Herong, Qian Dazhi, et al. Structure design and analysis of subcritical blanket fuel zone of hybrid reactor based on ITER. High Power Laser and Particle Beams, 2015, 27: 046001 doi: 10.11884/HPLPB201527.046001 [5] 刘志勇, 李正宏, 黄洪文, 等. ITER磁体支撑结构有限元分析[J]. 强激光与粒子束, 2015, 27: 016013. doi: 10.11884/HPLPB201527.016013Liu Zhiyong, Li Zhenghong, Huang Hongwen, et al. Finite element analysis of ITER magnet support structure. High Power Laser and Particle Beams, 2015, 27: 016013 doi: 10.11884/HPLPB201527.016013 [6] 曾和荣, 黄洪文, 刘志勇, 等. ITER驱动次临界包层总体结构概念设计[J]. 强激光与粒子束, 2015, 27: 016014. doi: 10.11884/HPLPB201527.016014Zeng Herong, Huang Hongwen, Liu Zhiyong, et al. Whole structure conceptual design of subcritical blanket driven by ITER. High Power Laser and Particle Beams, 2015, 27: 016014 doi: 10.11884/HPLPB201527.016014 [7] Pipkinsay D S, Atlurib S N. Applications of the three dimensional method finite element alternating method[J]. Finite Elements in Analysis and Design, 1996 (23): 133-153. [8] ANSYS高级技术分析指南[M]. 美国: ANSYS公司. 1999.ANSYS advanced analysis techniques guide. America: ANSYS Company. 1999 [9] 杜平安. 结构有限元分析[M]. 北京: 机械工业出版社, 1998.Du Ping'an. The finite element analysis and structure modeling method. Beijing: China Machine Press, 1998 [10] 刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 1991.Liu Hongwen. Mechanics of materials. Beijing: Higher Education Press, 1991 [11] Nash W A. 静力学与材料力学[M]. 纽约: 美国麦格劳希尔教育出版集团, 2002.Nash W A. Statics and material mechanics. New York: America McGraw Hill Education Press, 2002