Lightning protection evaluation technology of surface ship based on leader progression model
-
摘要: 基于先导发展模型实现了海域上地闪先导2维数值放电模拟,完成了海域上地闪先导放电通道过程的图样采集。通过建立二维舰船模型,并根据相关标准对舰船模型进行避雷针的数量、高度、位置设定,对此模型进行雷电先导放电数值试验。经大量试验统计分析,舰船采用单根避雷针设计方案时,避雷针的高度较高,使得接闪概率明显增大,但在避雷针周围取得了较理想的防护效果;与单根设计方案相比,双根避雷针设计使得舰船整体结构高度降低,总的接闪次数有所减少,防护效果更佳。该评估方法可与长间隙放电试验和雷电观测互为补充,进一步完善了水面舰艇避雷系统防护评估检验技术,为舰艇的雷电防护提供理论基础。Abstract: The high resolution simulation of cloud-to-ground lightning leaders on sea surface is presented based on two-dimensional leader progression model, and the fine image of the development process of the lightning leader is acquired. Through the establishment of two-dimensional model of ship, and according to the related standards of ship, the number and height and position of lightning rod are determined, and their lightning protection area is evaluated using proposed method. The test data show that when the ship adopts the single lightning rod protection, the probability of lightning strike is obviously increased, and the protection effect is better in the vicinity of the lightning rod. Compared with the single rod scheme, when the ship adopts double lightning rod protection the overall structure height of the ship is reduced, total number of lightning flashes on the ship will be reduced, and the protective effect will be better. With the development of long air gap discharge test and lightning observation, the protection analysis method will be more thorough and accurate.
-
Key words:
- warship /
- leader progression model /
- lightning rod /
- finite difference method
-
表 1 试验结果与雷击概率(单根避雷针)
Table 1. Experiment result and lightning strike probability (single lightning rod)
striking point number of strikes probability/% sea 113 22.6 lightning rod 326 65.2 hull 39 7.8 bow or stern 22 4.4 total 500 100 表 2 试验结果与雷击概率(两根避雷针)
Table 2. Experiment result and lightning strike probability (two lightning rods)
striking point number of strikes probability/% sea 129 25.80 lightning rod 1 261 52.2 lightning rod 2 64 12.8 hull 19 3.8 bow or stern 27 5.4 total 500 100.00 -
[1] 罗佳俊, 罗经权. 渤海"长青号"金属塔类装置雷电防护设计[J]. 船海工程, 2009, 38(6): 99-101. doi: 10.3963/j.issn.1671-7953.2009.06.029Luo Jiajun, Luo Jingquan. Design of the metal tower-type devices lightning protection for Chang-qing FPSO. Ship & Ocean Engineering, 2009, 38(6): 99-101 doi: 10.3963/j.issn.1671-7953.2009.06.029 [2] Thomson E M. A critical assessment of the U.S. code for lightning protection of boats[J]. IEEE Trans Electromagn Compat, 1991(33): 132-138. https://ieeexplore.ieee.org/document/78350 [3] 张义军, 周秀骥. 雷电研究的回顾和进展[J]. 应用气象学报, 2006, 17(6): 829-834. doi: 10.3969/j.issn.1001-7313.2006.06.019Zhang Yijun, Zhou Xiuji. Review and progress of lightning research. Journal of Applied Meteorological Science, 2006, 17(6): 829-834 doi: 10.3969/j.issn.1001-7313.2006.06.019 [4] Hossam-Eldin A A, Omran E A M. Maritime structures and ships lightning protection[C]//Electrical Insulation Conference and Electrical Manufacturing Expo, 2007: 30-34. [5] Grzybowski S. Experimental evaluation of lightning protection zone used on ship[C]//IEEE Electric Ship Technologies Symposium, 2007: 215-220. [6] 万启发, 霍锋, 谢梁, 等. 长间隙放电特性研究综述[J]. 高电压技术, 2012, 38(10): 2499-2505.Wan Qifa, Huo Feng, Xie Liang, et al. Summary of research on flash over characteristics of long air-gaps. High Voltage Engineering, 2012, 38(10): 2499-2505 [7] 谭涌波, 周博文, 郭秀峰, 等. 建筑物高度对上行闪电触发以及传播影响的数值模拟[J]. 气象学报, 2015, 73(3): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htmTan Yongbo, Zhou Bowen, Guo Xiufeng, et al. A numerical simulation of the effects of building height on single upward lightning trigger and propagation. Acta Meteorologica Sinica, 2015, 73(3): 546-556 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htm [8] Rizk F A M. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Trans Power Delivery, 1990, 5(4): 1983-1997. [9] 谷山强, 陈家宏, 陈维江, 等. 长空气间隙放电综合观测系统的建立[J]. 高电压技术, 2009, 35(11): 2640-2646.Gu Shanqiang, Chen Jiahong, Chen Weijiang, et al. Establishment of integrated observation system for long air gap discharges. High Voltage Engineering, 2009, 35(11): 2640-2646 [10] Niemeyer L. Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physics Review Letter, 1984, 52(12): 1033-1036 [11] Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and pre-breakdown in solid dielectrics[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773. doi: 10.1063/1.337219 [12] 谷琛, 严萍, 邵涛, 等. 基于分形理论的电介质放电仿真计算[J]. 高电压技术, 2006, 32(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200601000.htmGu Chen, Yan Ping, Shao Tao, et al. Fractal simulation of breakdown in dielectric. High Voltage Engineering, 2006, 32(1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200601000.htm [13] 何金良, 曾嵘, 陈水明. 输电线路雷电防护技术研究(三): 防护措施[J]. 高电压技术, 2009, 35(12): 2917-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912007.htmHe Jinliang, Zeng Rong, Chen Shuiming. Lightning protection study of transmission line, part Ⅲ: protection measure. High Voltage Engineering, 2009, 35(12): 2917-2923 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200912007.htm [14] Golde R H. Lightning protection[M]. London: Edward Arnold, 1973. [15] He Jinliang, Tu Youping, Zeng Rong, et al. Numeral analysis model for shielding failure of transmission line under lightning stroke[J]. IEEE Trans on Power Delivery, 2005, 20(2): 815-822. https://ieeexplore.ieee.org/document/1413321/ [16] Chen Qiang. Thunderstorm charged model & discharge simulation and numerical evaluation of the lightning protection system. Shijiazhuang: Ordnance Engineering College, 2011: 10-13 [17] 华冠军, 王晓瑜, 徐先芝, 等. 接地电阻对放电击中点影响的试验[J]. 华中理工大学学报, 1998, 26(9): 68-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG809.021.htmHua Guanjun, Wang Xiaoyu, Xun Xianzhi, et al. The experimental study on ground resistance affecting discharge striking points. J Huazhong Univ of Sci & Tech, 1998, 26(9): 68-70 https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG809.021.htm [18] 詹花茂, 王晓瑜, 汪雁, 等. 放电击中点概率分布影响因素的实验研究[J]. 高电压技术, 1999, 25(2): 79-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ199902033.htmZhan Huamao, Wang Xiaoyu, Wang Yan, et al. The experimental study on factors affecting probability distribution of discharge striking points. High Voltage Engineering, 1999, 25(2): 79-81 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ199902033.htm [19] Ait-Amar S, Berger G. A modified version of the rolling sphere method[J]. IEEE Trans Dielectr Electr, 2009, 16: 718-725. [20] 刘蜀岷. 避雷针保护范围不能"绝对化"[J]. 高电压技术, 2005, 31(7): 82-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200507030.htmLiu Shumin. Avoiding absolutization of protection range of lightning rods. High Voltage Engineering, 2005, 31(7): 82-83 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200507030.htm [21] GJB4000-2000舰船通用规范电力规范3组电力系统[S]. 北京: 总装备部军标出版发行部, 2000.GJB4000-2000 General specifications for naval ships part 3 power system. Beijing: Gerneral Armement Department Military Standard Publishing Department, 2000 [22] 王萌. 水面舰艇避雷针防护区域评估方法[J]. 舰船科学技术, 2011, 33(6): 140-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201106033.htmWang Meng. The evaluation method of lightning rod protection area of surface ships. Ship Science and Technology, 2011, 33(6): 140-144 https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201106033.htm [23] Defend Standard 02-516, Guide to Lightning Protection in HM surface ships[S]. [24] Mazur V. Computer simulation of a downward negative stepped leader and its interaction with a ground structure[J]. Journal of Geophysical Research, 2000, 105(17): 22361-22369. doi: 10.1029/2000JD900278