Monte Carlo simulation of Cherenkov light generated by underwater Co-60 source
-
摘要: 随着核应用领域的不断拓宽,放射源丢失事故发生的概率也随之增加。机载伽马谱仪可有效搜寻地面放射源,然而对于放射源丢失于水域的情况,由于伽马射线经由水层屏蔽后可探测性降低,故利用放射源在水中产生的切伦科夫辐射对其进行搜寻显得十分重要。采用MCNP与Geant4相结合的方法,以及在Geant4程序中采用接续计算技巧,对Co-60源在水中的切伦科夫光产生以及传输进行了计算,计算表明,切伦科夫光经水中传播后,主要波段在300~600 nm,强度呈由边缘到中心渐强的特征分布,分布范围大致与放射源在水中的深度一致,在水中传输300 m后其光通量约为100 cm-2,可利用光谱特征和强度分布特征对其进行测量。
-
关键词:
- 放射源丢失 /
- 切伦科夫辐射 /
- MCNP耦合Geant4计算 /
- Geant4接续计算 /
- 光学测量
Abstract: With wide application of nuclear techniques, accidents of lost radioactive sources increase. The airborne gamma spectrometer can be used for searching the lost radiation sources on the ground level. However, for radioactive sources lost in water, the use of gamma spectrometer is limited as a result of the shielding of gamma rays by water. So detection of underwater radioactive source based on Cherenkov light generated by the radioactive source is becoming important. With applications of combined simulation of Geant4 and MCNP, and continuation simulation method in Geant4, distributions and transmission of Cherenkov light generated by underwater Co-60 sealed source were simulated. The simulation reveals that wavelength of Cherenkov light is between 300~600 nm through transmission in water. The light intensity becomes stronger from the edge to the center, and the distribution range approximately equals to the depth of the radioactive source in water. The light flux is about 100 Cherenkov photons·cm-2 after 300 m transmission in water. The Cherenkov light can be detected by the characteristics of its wavelength spectrum and intensity distribution. -
表 1 Co-60外壳表面伽马、电子源强
Table 1. Source intensity of gamma radiation and electrons
position gamma radiation
/(particles·s-1)electrons
/(particles·s-1)tube surface 1.358 4×1014 1.116 1×1012 top surface 6.822 4×1012 5.741 7×1010 bottom surface 2.126 1×1013 1.748 1×1011 -
[1] 闻良生, 龚频, 黄茜, 等. 小型旋翼机机载辐射环境监测系统的设计与实现[J]. 强激光与粒子束, 2016, 28: 106004. doi: 10.11884/HPLPB201628.160036Wen Liangsheng, Gong Pin, Huang Xi, et al. Design and implementation of minitype rotorcraft airborne radiation monitoring system. High Power Laser and Particle Beams, 2016, 28: 106004 doi: 10.11884/HPLPB201628.160036 [2] 倪卫冲, 刘士凯, 高国林, 等. AGS-863航空伽马能谱勘查系统机载试验[J]. 中国核科学技术进展报告, 2011, 2(1): 335-343. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htmNi Weichong, Liu Shikai, Gao Guolin, et al. Airborne testing of AGS-863 airborne gamma spectrometry survey system. Progress Report on China Nuclear Science & Technology, 2011, 2(1): 335-343 https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201110001060.htm [3] 翁渝民. 单光子计数-弱信号检测的有力手段[J]. 物理, 1980, 9(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htmWeng Yumin. Single photon counting-efficient technique for weak single measurement. Physics, 1980, 9(1): 20-24 https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ198001007.htm [4] 舒迪昀, 汤晓兵, 侯笑笑, 等. 基于Cerenkov效应水下放射源搜寻技术的可行性分析研究[J]. 原子能科学技术, 2015, 49(4): 582-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htmShu Diyun, Tang Xiaobing, Hou Xiaoxiao, et al. Analysis of feasibility for searching underwater radioactive source using Cerenkov effect. Atomic Energy Science and Technology, 2015, 49(4): 582-588 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201504002.htm [5] 刘斌, 贾清刚, 张天奎, 等. 水下切伦科夫光光斑的蒙特卡罗模拟[J]. 强激光与粒子束, 2013, 25(1): 196-200. doi: 10.3788/HPLPB20132501.0196Liu Bin, Jia Qinggang, Zhang Tiankui, et al. Monte Carlo simulation of Cherenkov light spot produced by underwater radioactive source. High Power Laser and Particle Beams, 2013, 25(1): 196-200 doi: 10.3788/HPLPB20132501.0196 [6] Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research A, 2007, 506(3): 250-303. https://www.sciencedirect.com/science/article/pii/S0168900203013688 [7] Allison J, Amako K, Apostolaki J, et al. Geant4 developments and applications[J]. IEEE Trans Nuclear Science, 2006, 53(1): 270-278. https://ieeexplore.ieee.org/document/1610988/ [8] Zhang Qingmin, Hu Zhigang, Deng Bangjie, et al. A simple iterative method for compensating response delay of self-powered neutron detector[J]. Nuclear Science and Engineering, 2017, 186(1): 293-302. [9] GB7465-2009. 高活度钴60密封放射源[S]. 中华人民共和国国家标准, 2009.GB7465-2009. High activity cobalt-60 sealed radioactive sources. PRC standard, 2009 [10] Pope R M, Fry E S. Absorption spectrum(380~700 nm) of pure water. Integrating cavity measurement[J]. Appl Opt, 1997, 36(33): 8710-8723. https://pubmed.ncbi.nlm.nih.gov/18264420/ [11] Quickenden T I, Irvin J A. The ultraviolet absorption spectrum of liquid water[J]. J Chem Phys, 1980, 72(8);4416-4428. [12] 曹婷婷, 罗时荣. 天空直射光谱和天空光谱的测量与分析[J]. 物理学报, 2006, 56(9): 5554-5557. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htmCao Tingting, Luo Shirong. Measurement and analysis of direct sunlight and skylight spectra. Acta Phsica Sinica, 2006, 56(9): 5554-5557 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200709095.htm [13] 徐英莹, 金伟其. 夜晚天空光谱辐射测量研究及光谱去噪分析[J]. 光谱学与光谱分析, 2012, 32(6): 1456-1459. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htmXu Yingying, Jin Weiqi. Measurement of night sky spectral radiation and analysis of spectral denoising. Spectroscopy and Spectral Analysis, 2012, 32(6): 1456-1459 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201206006.htm