Design of array antenna for generating dual-frequency electromagnetic vortex in Ku and K band
-
摘要: 涡旋电磁波具有携带轨道角动量的特性,利用这一特性,采用涡旋电磁波作为信号的载体,可以实现同一时间、同一频段的多路信号传输,极大地提高系统容量和频带利用率。以同轴馈电的半圆型开槽微带天线为单元,设计出了一种能工作在Ku波段和K波段的涡旋电磁阵列天线。使用三维电磁场仿真软件建模并且优化参数,最终得到在中心频率分别为17.1 GHz和19.7 GHz时,阵列天线产生的电磁波携带有轨道角动量。结论表明:该阵列天线能够产生双频涡旋电磁波。Abstract: The vortex electromagnetic wave has the characteristic of carrying orbital angular momentum. Based on this feature, vortex electromagnetic waves are used as signal carrier to achieve multi-channel signal simultaneous transmission within the same frequency band, which greatly improves the system capacity and bandwidth utilization. In this paper, by utilizing the circular microstrip antenna with a semicircular slotter as an element, a kind of electromagnetic vortex generating antenna array is designed, which can work in the Ku band and K band. The array antenna is modeled and its parameters are optimized with the help of high frequency structure simulator. The analysis of the simulation results indicate that electromagnetic waves generated by the array antenna can carry the orbital angular momentum when the center frequencies are chosen as 17.1 GHz and 19.7 GHz respectively. Therefore, it is concluded that the array antenna can generate dual frequency vortex electromagnetic wave.
-
表 1 阵列天线设计参数
Table 1. Parameters of array antenna
r/mm r1/mm r2/mm r3/mm h/mm a/mm b/mm w/mm 11.88 4.0 0.3 0.5 1.0 2.05 1.5 35.8 -
[1] Bai Qiang, Tennant A, Allen B, et al. Generation of orbital angular momentum (OAM) radio beams with phased patch array[C]//IEEE Antennas and Propagation Conference. 2014: 410-413. [2] Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A Atomic Molecular & Optical Physics, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185 [3] Thide B, Then H, Sjoholm J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99: 087701. doi: 10.1103/PhysRevLett.99.087701 [4] Mohammadi S M, Daldorff L S, Bergman J S, et al. Orbital angular momentum in radio: A system study[J]. IEEE Trans Antennas and Propagation, 2010, 58(2): 565-572. doi: 10.1109/TAP.2009.2037701 [5] Tamagnone M, Craeye C, Perruisseaucarrier J. Further comment on encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2013, 14: 033001. https://arxiv.org/abs/1302.4121 [6] Tennant A, Allen B. Generation of radio frequency OAM radiation modes using circular time-switched and phased array antennas[C]//IEEE Antennas and Propagation Conference. 2012: 1-4. [7] Bai Xudong, Liang Xianling, Sun Yuntao, et al. Experimental array for generating dual circularly-polarized dual-mode OAM radio beams[J]. Scientific Reports, 2017, 7: 40099. https://www.nature.com/articles/srep40099 [8] Yan Yan, Xie Guodong, Lavery M P, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876 [9] 周守利, 俞奇, 梁显锋, 等. 基于圆微带天线阵的射频涡旋电磁波的产生[J]. 强激光与粒子束, 2016, 28: 073202. doi: 10.11884/HPLPB201628.073202Zhou Shouli, Yu Qi, Liang Xianfeng, et al. Radio vortex electromagnetic beam generation based on circular patch array antenna. High Power Laser and Particle Beams, 2016, 28: 073202 doi: 10.11884/HPLPB201628.073202 [10] Zheng Shilie, Hui Xiaonan, Jin Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(4): 1530-1536. [11] Nguyen D K, Pascal O, Sokoloff J, et al. Antenna gain and link budget for waves carrying orbital angular momentum[J]. Radio Science, 2016, 50(11): 1165-1175. doi: 10.1002/2015RS005772 [12] Zhang Weite, Zheng Shilie, Hui Xiaonan, et al. Four-OAM-mode antenna with traveling-wave ring-slot structure[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16(99): 194-197. https://ieeexplore.ieee.org/document/7470579 [13] Liu Dandan, Gui Liangqi, Akram M R. Generation of OAM radio waves using slot antenna array[C]//IEEE Asia-Pacific Microwave Conference. 2015: 1-3. [14] Yan Yan, Xie Guodong, Huang Hao, et al. Demonstration of 8-mode 32-Gbit/s millimeter-wave free-space communication link using 4 orbital-angular-momentum modes on 2 polarizations[C]//IEEE International Conference on Communications. 2014: 4850-4855. [15] 李强, 孙学宏, 庞丹旭, 等. 基于多模态OAM涡旋电磁波的L波段宽频阵列天线设计[J]. 电子学报, 2016, 44(12): 2954-2959. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201612020.htmLi Qiang, Sun Xuehong, Pang Danxu, et al. The design of L band broadband array antenna based on multi-modal OAM vortex electromagnetic wave. Acta Electronica Sinica, 2016, 44(12): 2954-2959 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201612020.htm [16] Yuan Tiezhu, Cheng Yongqiang, Wang Hongqiang, et al. Generation of OAM radio beams with modified uniform circular array antenna[J]. Electronics Letters, 2016, 52(11): 896-898. [17] Wu Huayang, Yuan Yuqing, Zhang Zhaoyang, et al. UCA-based orbital angular momentum radio beam generation and reception under different array configurations[C]//IEEE International Conference on Wireless Communications & Signal Processing. 2014: 1-6. [18] Guo Zhigui, Yang Guoming. Radial uniform circular antenna array for dual-mode OAM communication[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 16(6): 404-407. https://ieeexplore.ieee.org/document/7492246