Validation of SuperMC based on VENUS-Ⅱ benchmark experiment
-
摘要: 为了验证SuperMC软件系统对装载MOX燃料压水堆的临界计算能力,采用国际经合组织核能署(OECD/NEA)2001年发布的三维VENUS-Ⅱ国际基准模型对SuperMC3.1版本进行了测试验证。本次测试包括栅元和堆芯两个部分,分别计算了栅元无限增殖因数、重核反应率、堆芯有效增殖因数、堆芯轴向裂变反应率等关键物理参数。将SuperMC计算结果与基准模型实验测量值以及MCNP计算值作了对比。结果显示:在测试范围内,SuperMC计算值与参考值吻合得较好,表明SuperMC可应用于含MOX燃料堆芯的临界计算。
-
关键词:
- SuperMC /
- VENUS-Ⅱ基准模型 /
- 蒙特卡罗 /
- MOX燃料 /
- 测试验证
Abstract: Super Monte Carlo Program for Nuclear and Radiation Simulation (SuperMC), a general, intelligent, accurate and precise simulation software system for the design and safety evaluation of nuclear systems, is developed by FDS team of key laboratory of neutronics and radiation safety. In order to validate the accuracy of SuperMC in calculating MOX-fueled system, it was benchmarked with the VENUS-Ⅱ MOX-fueled core model released by OECD/NEA. Both cell and core calculations were performed. A series of key parameters of cell infinite multiplication factor, reaction rates per heavy isotope, core effective multiplication factor, and axial fission rate distribution of six fuel pins were calculated. The computational results are compared with measured data and the MCNP calculated results, showing that the SuperMC results agree well with the experimental results and the MCNP calculated results. The correctness and reliability of SuperMC calculating neutron transport in MOX-fuelled system are preliminarily verified.-
Key words:
- SuperMC /
- VENUS-Ⅱ benchmark /
- Monte Carlo /
- MOX fuel /
- validation
-
表 1 栅元k∞计算结果比较
Table 1. k∞ values of cell calculations
fuel cell k∞ deviation range*/% MCNP CosMC TRIPOLI SuperMC 3.3/0 UO2 1.414 82±11 pcm 1.406 16±13.5 pcm 1.412 38±6 pcm 1.414 75±11 pcm 0.005~0.612 4.0/0 UO2 1.344 25±11 pcm 1.338 72±13.5 pcm 1.341 22±7 pcm 1.344 12±11 pcm 0.001~0.403 2.2/2.7 MOX 1.272 49±13 pcm 1.260 24±13.5 pcm 1.269 44±6 pcm 1.272 57±13 pcm 0.006~0.978 * This column stands for the deviation of SuperMC relative to other MC codes in the table 表 2 堆芯keff计算结果比较
Table 2. keff values of core calculation
item keff deviation/% experimental 1.000 00±32 pcm MCNP 1.001 32±9 pcm 0.132 COSMC 0.996 475±18.6 pcm -0.353 TRIPOLI 1.004 07±6 pcm 0.407 superMC 1.001 45±9 pcm 0.164 -
[1] Wu Yican, Song Jing, Zheng Huaqing, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82: 161-168. doi: 10.1016/j.anucene.2014.08.058 [2] Wu Yican, FDS Team. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7/11): 1987-1992. https://www.sciencedirect.com/science/article/pii/S0920379608004948 [3] 吴宜灿, 宋靖, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1): 62-71. doi: 10.3969/j.issn.0258-0918.2016.01.009Wu Yican, Song Jing, Hu Liqin, et al. Super Monte Carlo simulation program for nuclear and radiation process: SuperMC. Nuclear Science and Engineering, 2016, 36(1): 62-71 doi: 10.3969/j.issn.0258-0918.2016.01.009 [4] 余盛鹏, 吴斌, 宋靖, 等. SuperMC在ITER中子学建模中的应用[J]. 核科学与工程, 2016, 36(1): 84-87. doi: 10.3969/j.issn.0258-0918.2016.01.012Yu Shengpeng, Wu Bin, Song Jing, et al. The application of SuperMC in ITER neutronics modeling. Nuclear Science and Engineering, 2016, 36(1): 84-87 doi: 10.3969/j.issn.0258-0918.2016.01.012 [5] Zhang Binhang, Song Jing, Sun Guangyao, et al. Criticality validation of SuperMC with ICSBEP[J]. Annals of Nuclear Energy, 2016, 87: 494-499. https://www.sciencedirect.com/science/article/pii/S0306454915004831 [6] 汪晖, 宋靖, 孙光耀, 等. 基于钠冷快堆BN-600的SuperMC基准校验分析[J]. 原子能科学技术, 2015, 49(s1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2015S1003.htmWang Hui, Song Jing, Sun Guangyao, et al. Benchmarking of SuperMC based on sodium cooled fast reactor BN-600. Atomic Energy Science and Technology, 2015, 49(s1): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2015S1003.htm [7] 刘鸿飞, 张彬航, 张澍, 等. 基于Hoogenboom基准模型的SuperMC全堆芯计算能力校验[J]. 核技术, 2016, 39(4): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201604013.htmLiu Hongfei, Zhang Binhang, Zhang Shu, et al. Full reactor core calculation performance validation of SuperMC based on Hoogenboom benchmark. Nuclear Techniques, 2016, 33(5): 80-84 https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU201604013.htm [8] 孙光耀, 宋靖, 郑华庆, 等. 超级蒙特卡罗软件SuperMC2.0中子输运计算校验[J]. 原子能科学技术, 2013, 47(s2): 520-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htmSun Guangyao, Song Jing, Zheng Huaqing, et al. Benchmark of neutron transport simulation capability of super Monte Carlo calculation program SuperMC2.0. Atomic Energy Science and Technology, 2013, 47(s2): 520-525 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htm [9] Manual M. X-5 Monte Carlo Team. MCNP—A general Monte Carlo N-particle transport code[R]. LA-UR- 03-1987, 2003. [10] Na B-C, Messaoudi N. Benchmark on the three-dimensional VENUS-2 MOX core measurements[R]. 2003. [11] 胡家驹, 马续波, 陈义学, 等. 基于VENUS-2临界基准的CosMC程序验证[J]. 核动力工程, 2014, 35(s2): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2026.htmHu Jiaju, Ma Xubo, Chen Yixue, et al. Verification of CosMC based on VENUS-2 critical benchmark. Nuclear Power Engineering, 2014, 35(s2): 94-97 https://www.cnki.com.cn/Article/CJFDTOTAL-HDLG2014S2026.htm [12] Savva P, Varvayanni N, Catasaros N. Analysis of the three-dimensional VENUS-2 MOX core benchmark using the Monte Carlo code TRIPOLI-4 and the ENDF/B-VI. 4, ENDF/B-VⅡ. 0 and JEFF-3.1 nuclear data sets[J]. Nuclear Engineering and Design, 2014, 273: 215-233. https://www.sciencedirect.com/science/article/pii/S0029549314001812