Simulation study and validation of improved amplified source method
-
摘要: 针对源倍增法测量次临界度受到基波份额变化以及通量畸变影响的问题,有文献提出使用环形“集总”探测器布置和“刻度曲线”来改善其测量结果的方法。为了验证该方法的实用性,用超级蒙特卡罗核模拟软件系统SuperMC与混合评价数据库HENDL,以日本京都大学KUCA铅基实验装置为对象, 展开了模拟研究。研究结果表明:该改进方法在KUCA实验装置上是适用的,说明此改进方法具有较好的工程应用潜力。模拟结果表明,使用KUCA装置中现有的六个裂变室进行“集总”探测可以给出相对准确的“测量”次临界度,但为了使测量结果更加准确,在未来实验中,可以在堆芯外围布置更多对称的探测器进行“集总”探测。Abstract: Amplified Source Method(ASM) is based on point kinetics model. While used in Accelerator Driven System(ADS) with deep subcriticality and strong external source, its result is affected by the external source effect, the fundamental flux effect and the spatial effect seriously. In order to solve this problem, an annular detector positioning method with calibration has been given. In order to test the practicality of this method, further study is performed against the Kyoto University Critical Assembly by Super Monte Carlo Program for Nuclear and Radiation Simulation(SuperMC) with the HENDL database. Numerical results demonstrate that the proposed method works well for the problem and the six fission chambers in the assembly can give a good measurement result. And more detectors arranged on the fringes of the core are needed in the upcoming experiments to get more accurate measurement results.
-
Key words:
- amplified source method /
- subcriticality /
- KUCA
-
表 1 KUCA不同堆芯布置下的次临界度
Table 1. Subcriticalities of KUCA under different core conditions
case number of
fuel rodsrod insertion keff Ref.[10] simulation results |relative deviations|/% 1 46 C1, C2, C3, S4, S5, S6 0.977 50 0.978 41 0.09 2 32 all six rods withdrawn 0.954 40 0.955 05 0.07 3 26 all six rods withdrawn 0.910 42 0.910 62 0.02 表 2 不同工况次临界度与探测器计数
Table 2. Subcriticalities and detector counts under different core conditions
conditions control rods’ position/cm raw subcriticality
ρr/pcmdetector count
rate(#1)/10-2s-1measuring subcriticality
ρm/pcmCon.1 50 2 211.86 2.547 42 898.77 Con.2 60 1 902.52 2.995 04 764.45 Con.3 65 1 515.63 3.538 90 646.97 Con.4 70 1 120.41 4.438 02 515.90 Con.5 80 279.78 8.183 41 279.78 Con.6 C1 control rod inserted into the core 272.74 8.382 95 273.12 Con.7 C1, C2, C3, S5 control rod inserted into the core 1 479.57 4.339 80 527.57 Con.8 C1, C2, C3, S4, S5 control rod inserted into the core 2 008.55 3.535 54 647.58 表 3 不同探测器布置给出的工况6-8的次临界度测量结果
Table 3. Subcriticality of Con.6-8 given by different detector arrangements
conditions raw
subcriticality
ρr/ pcmsingle detector(#1) fission chamber detectors #4~#11 detectors measuring
subcriticality
ρm, 1/ pcm$\left|\frac{\rho_{\mathrm{m}, 1}-\rho_{\mathrm{r}}}{\rho_{\mathrm{r}}}\right| / \%$ measuring
subcriticality
ρm, 2/ pcm$\left|\frac{\rho_{\mathrm{m}, 2}-\rho_{\mathrm{r}}}{\rho_{\mathrm{r}}}\right| / \%$ measuring
subcriticality
ρm, 3/ pcm$\left|\frac{\rho_{\mathrm{m}, 3}-\rho_{\mathrm{r}}}{\rho_{\mathrm{r}}}\right| / \%$ Con.6 272.74 257.56 5.57 269.85 1.06 271.10 0.60 Con.7 1 479.57 1 148.63 22.37 1 395.83 5.66 1 459.15 1.38 Con.8 2 008.55 1 540.64 23.30 1 959.25 2.45 1 993.29 0.76 -
[1] 詹文龙, 徐瑚珊. 未来先进核裂变能-ADS嬗变系统[J]. 中国科学院院刊, 2012, 27(3): 375-380. doi: 10.3969/j.issn.1000-3045.2012.03.017Zhan Wenlong, Xu Hushan. Advanced fission energy program—ADS transmutation system. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 375-380 doi: 10.3969/j.issn.1000-3045.2012.03.017 [2] 陈忠, 蒋洁琼, 王明煌, 等. 加速器驱动核废料嬗变次临界堆中子学初步设计分析[J]. 核科学与工程, 2013, 33(2): 180-185. doi: 10.3969/j.issn.0258-0918.2013.02.012Chen Zhong, Jiang Jieqiong, Wang Minghuang, et al. Preliminary neutronics design analysis on accelerator driven subcritical reactor for nuclear waste transmutation. Nuclear Science and Engineering, 2013, 33(2): 180-185 doi: 10.3969/j.issn.0258-0918.2013.02.012 [3] 赵志祥, 夏海鸿. 加速器驱动次临界系统(ADS)与核能可持续发展[J]. 中国工程科学, 2008, 10(3): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803012.htmZhao Zhixiang, Xia Haihong. Researches on ADS and the sustainable development of the nuclear energy. Engineering Sciences, 2008, 10(3): 66-72 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX200803012.htm [4] 罗璋琳, 史永谦, 潘泽飞. 实验反应堆物理导论[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011.Luo Zhanglin, Shi Yongqian, Pan Zefei. Introduction to experimental reactor physics. Harbin: Harbin Engineering University Press, 2011 [5] Bécares V, Villamarín D, Fernández-Ordóñez M, et al. Validation of ADS reactivity monitoring techniques in the Yalina-booster subcritical assembly[J]. Ann Nucl Energy, 2013, 53: 331-341. doi: 10.1016/j.anucene.2012.10.001 [6] Uyttenhove W, Baeten P, Ban G, et al. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project[J]. IEEE Trans Nuclear Science, 2013, 59(6): 3194-3200. https://ieeexplore.ieee.org/document/6334474/ [7] Naing W, Tsuji M, Shimazu Y. The effect of neutron source distribution on subcriticality measurement of pressurized water reactors using the modified neutron source multiplication method[J]. Journal of Nuclear Science and Technology, 2003, 40(11): 951-958. [8] Blaise P, Mellier F, Fougeras P. Application of the modified source multiplication(MSM) technique to subcritical reactivity worth measurements in thermal and fast reactor systems[J]. IEEE Trans Nuclear Science, 2011, 58(3): 1166-1176. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005740387 [9] Yang Yingkun. Preliminary study of subcriticality monitoring methods in accelerator driven subcritical systems. Beijing: University of Chinese Academy of Sciences, 2015: 30-40 [10] Pyeon C. Neutronics on solid Pb-Bi in accelerator-driven system with 100 MeV protons at Kyoto University critical assembly[R]. Reseach Reactor Institute, Kyoto University, 2015. [11] Wang Dong, Yu Shengpeng, Wang Guozhong, et al. MCAM 5: An advanced interface program for multiple Monte Carlo codes[C]//Proceedings of the SNA+ MC 2013—Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo. 2014. [12] Chen Zhenping, Zheng Huaqing, Sun Guangyao, et al. Preliminary study on CAD-based method of characteristics for neutron transport calculation[J]. Chinese Physics C, 2014, 38: 058201. doi: 10.1088/1674-1137/38/5/058201 [13] Li Ying, Lu Lei, Ding Aiping, et al. Benchmarking of MCAM 4.0 with the ITER 3D model[J]. Fusion Engineering and Design, 2007, 82(15): 2861-2866. https://www.sciencedirect.com/science/article/pii/S0920379607000762 [14] Wu Yican. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7): 1987-1992. https://www.sciencedirect.com/science/article/pii/S0920379608004948 [15] Song Jing, Sun Guangyao, Zheng Huaqing, et al. Benchmarking of super Monte Carlo simulation program SuperMC 2[C]//Proceedings of the SNA+ MC 2013—Joint International Conference on Supercomputing in Nuclear Applications+ Monte Carlo. 2014. [16] Wu Yican, Chen Zhibin, Hu Liqin, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016, 1: 16154. https://www.nature.com/articles/nenergy2016154 [17] Wu Yican, Song Jing, Zheng Huaqing, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Ann Nucl Energy, 2015, 82: 161-168. https://sna-and-mc-2013-proceedings.edpsciences.org/articles/snamc/abs/2014/01/snamc2013_06022/snamc2013_06022.html [18] 曾勤, 邹俊, 许德政, 等. 315中子/42光子耦合细群核数据库HENDL3.0/FG研发[J]. 核科学与工程, 2011, 31(4): 360-364. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201104014.htmZeng Qin, Zou Jun, Xu Dezheng, et al. Development of fine-group(315n/42γ) cross section library ENDL3. 0/FG for fusion-fission hybrid systems. Journal of Nuclear Science and Technology, 2011, 31(4): 360-364 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXY201104014.htm