Weighted Monte Carlo solution of neutron kinetics equations
-
摘要: 为了实现基于蒙特卡罗方法的中子动力学计算,在传统的直接蒙特卡罗动力学方法的基础上,提出了一种加权蒙特卡罗动力学方法。该方法通过引入粒子权重的概念,隐式考虑中子俘获反应和裂变反应过程中中子数目的变化,避免了模拟粒子的数目随时间的变化,降低了统计偏差,消除了程序计算过程中粒子的存库操作,提高了计算精度。基于单能点堆模型,开发了中子动力学计算程序NECP-Dandi,进行了大量数值验证与分析,包括无缓发中子、单组缓发中子、六组缓发中子、正阶跃反应性引入、负阶跃反应性引入、正脉冲反应性、负脉冲反应性和正线性反应性引入等情况。数值结果表明,相比于直接蒙特卡罗动力学方法,加权蒙特卡罗动力学方法在计算结果的精度和计算效率上有较为明显的改进,程序结构更为简洁。Abstract: The solution of time dependent neutronics equations still remains a challenging problem. A weighted Monte Carlo kinetics method (wMCk) is proposed based on traditional analog Monte Carlo kinetics method (aMCk). The "implicit capture" is introduced to avoid the problem of low efficient tallies in aMCk; the definition of particle weighting leads to a more compact simulation flow due to the elimination of stack operation to particle bank. Using this method, a code named NECP-Dandi was developed in mono-energetic point-kinetics model for numerical verification and analysis. 11 test cases with different reactivity insertions were employed to verify the method. Numerical results demonstrate that wMCk is superior to aMCk in terms of accuracy, efficiency and code structure.
-
表 1 11个测试算例
Table 1. Definition of 11 test cases
case No. of precursor group reactivity insertion duration of insertion/ms No. of initial particle/106 1 1 0 1 2500 2 6 0 1 2500 3 0 +0.006 5 1 1 4 0 -0.006 5 1 1 5 1 +0.006 5 1 2500 6 1 -0.006 5 1 2500 7 6 +0.006 5 1 2500 8 6 -0.006 5 1 2500 9 6 +0.006 5 0.1 2500 10 6 -0.006 5 0.1 2500 11 6 ≈0.03t 100 2500 表 2 单群宏观截面
Table 2. Macroscopic cross-section utilized in reactivity insertion
ρ Σt/cm-1 Σs/cm-1 Σf/cm-1 ν v/(cm·s-1) 0 0.165 258 0.156 187 0.003 657 47 2.48 3.046 655 10×106 +0.006 5 0.165 258 0.156 187 0.003 681 40 2.48 3.046 655 10×106 -0.006 5 0.165 258 0.156 187 0.003 633 84 2.48 3.046 655 10×106 0.65t 0.165 258 0.156 187 0.003 657 47+0.000 109 724t 2.48 3.046 655 10×106 表 3 最后一个时间点的统计误差与相对误差
Table 3. Largest statistic and relative errors
No. wMCk aMCk δerrR/% δerrS δerrR/% δerrS ① -0.014 6.56×10-4 0.73 9.76×10-3 ② 5.38×10-6 2.67×10-7 1.91×10-5 5.51×10-7 ③ 3.83×10-3 6.75×10-5 1.06 1.24×10-2 ④ -3.48×10-3 6.67×10-5 0.559 1.35×10-2 ⑤ -0.12 6.62×10-4 0.76 9.44×10-3 ⑥ 1.40×10-6 2.93×10-7 2.79×10-5 5.97×10-7 ⑦ 0.098 9 6.62×10-4 1.02 1.01×10-2 Note: Numbers in the first column correspond to those marked in Figures 1-5. -
[1] Wang Kan. RMC—A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82(1): 121-129. https://www.sciencedirect.com/science/article/pii/S0306454914004484 [2] Leppanen J. A new assembly-level Monte Carlo Neutron transport code for reactor physics calculations[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. 2005, 1871: 192-204. [3] 李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162. doi: 10.3788/HPLPB20132501.0158Li Gang, Zhang Baoyin, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162 doi: 10.3788/HPLPB20132501.0158 [4] 孙光耀, 宋婧, 郑华庆, 等. 超级蒙特卡罗计算软件SuperMC2.0中子输运计算校验[J]. 原子能科学技术, 2013, 47(s2): 520-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htmSun Guangyao, Song Jing, Zheng Huaqing, et al. Benchmark of neutron transport simulation capability of super Monte Carlo calculation program SuperMC2.0. Atomic Energy Science and Technology, 2013, 47(s2): 520-525 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS2013S2030.htm [5] X-5 Monte Carlo Team. MCNP-A general Monte Carlo N-particle transport code, version 5[R]. 2008-02-01. [6] Shen Huayun. Research on direct simulation method for neutron continuous-energy spatial kinetics. Beijing: Tsinghua University, 2008: 132-251 [7] Leppanen J. Development of a dynamic simulation mode in serpent 2 Monte Carlo code[C]//International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering. 2013: 117-204. [8] Mahjoub M, Koclas J. OpenMC-TD, a new module for Monte Carlo time dependent simulations used to simulate a CANDU6 Cell LOCA accident[C]//7th International Conference on Modelling and Simulation in Nuclear Science and Engineering. 2015: 54-67. [9] Russell L, Buijs A, Jonkmans G. G4-STORK: A Geant-4 based Monte Carlo reactor kinetics simulation code[J]. Ann Nucl Energy, 2014, 71(1): 451-461. https://www.sciencedirect.com/science/article/pii/S030645491400156X [10] 谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安: 西北工业大学出版社, 2005.Xie Zhongsheng, Deng Li. Numerical calculation method of neutron transport theory. Xi'an: Northwestern Polytechnical University Press, 2005 期刊类型引用(14)
1. 张伟,郭昆明. 冲击波预裂工艺技术在高地压矿井上覆硬岩层的工程实践. 现代矿业. 2024(01): 91-94 . 百度学术
2. 陆金波,贺宗鉴,朱鑫磊,黄昆. 基于晶闸管的放电冲击波油气增产装置研制. 科学技术与工程. 2024(05): 1885-1892 . 百度学术
3. 闫小兵,王秀龙,贺能,马正腾,张凤鹏. 金属丝电爆炸的电流波形特征及其破岩效果研究. 中国矿业. 2024(06): 210-217 . 百度学术
4. 冯国瑞,朱林俊,郭军,王朋飞,高瑞,文晓泽,樊一江,钱瑞鹏,米鑫程. 电脉冲循环冲击作用对花岗岩抗剪性能弱化研究. 中南大学学报(自然科学版). 2023(03): 785-796 . 百度学术
5. 王兆寒,张晨晖,于航,匡春霖,张凤鹏,彭建宇. 铜丝电爆炸载荷下红砂岩破裂行为实验. 有色金属(矿山部分). 2022(03): 36-41 . 百度学术
6. 秦勇,李恒乐,张永民,赵有志,赵锦程,邱爱慈. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析. 煤田地质与勘探. 2021(01): 108-118+129 . 百度学术
7. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 . 百度学术
8. 闫广亮,张凤鹏,郝红泽,高继开. 电爆炸破碎岩石类脆性材料实验方法与应用. 煤炭学报. 2021(10): 3203-3211 . 百度学术
9. 冉慧娟,耿召阳,赵伟康,张金梁,王珏,严萍. 脉冲大电流应用电缆的设计. 科学技术与工程. 2020(03): 1064-1070 . 百度学术
10. 杨万有,郑春峰,李昂,尹莎莎,郭晓飞,赵展,卢勇. 可控冲击波致裂海上油层可行性分析. 钻采工艺. 2020(01): 38-41+9 . 百度学术
11. 薛乐星,潘文,冯博,封雪松,赵娟,冯晓军. 等离子体起爆条件对不敏感含能材料响应强度的影响. 火炸药学报. 2020(03): 320-324 . 百度学术
12. 汪倩,李晓蔚,阴国锋,范云飞,石桓通,李兴文. 水中铜丝电爆炸激光阴影及流体模拟研究. 高电压技术. 2020(07): 2586-2592 . 百度学术
13. 鄢宇杰,付荣耀,李楠,孙鹞鸿,严萍. 电弧压裂技术研究现状与发展. 高压电器. 2019(09): 71-77 . 百度学术
14. 张永民,安世岗,陈殿赋,师庆民,张增辉,赵有志,罗伙根,邱爱慈,秦勇. 可控冲击波增透保德煤矿8~#煤层的先导性试验. 煤矿安全. 2019(10): 14-17+21 . 百度学术
其他类型引用(8)
-