Researchand validation on coupling method of JMCT and subchannel code
-
摘要: 蒙特卡罗与热工水力的耦合计算是目前反应堆数值模拟的重要研究方向,在蒙特卡罗方法连续能量点截面的基础上结合热工程序的温度反馈,反应堆中子计算的准确性得到大幅提高。为了提高计算精度,堆芯模型分辨率也需进一步提高,相比于组件均匀化模型,pin-by-pin的建模方式能够获得更好的结果。利用蒙特卡罗程序JMCT与子通道程序COBRA-EN实现了蒙特卡罗-热工的内耦合,内耦合方式通过内存进行数据传递,其计算效率及安全性均优于外耦合方法。随后利用NURISP项目迷你堆的pin-by-pin模型对耦合程序进行验证。计算结果与同类耦合程序相似,验证了程序的准确性。同时,对耦合过程的收敛性问题进行了初步分析。
-
关键词:
- JMCT /
- 子通道 /
- 蒙特卡罗-热工耦合 /
- pin-by-pin
Abstract: Monte Carlo is a statistical method widely used in solving particle transport problems. A Monte Carlo code has the advantages of much flexible geometry and high fidelity. Taking advantage of this, reactor core analysis can be solved with high fidelity, although much computing cost is needed. With the feedback of a thermal hydraulic code, the core in hot full power condition on steady state can be computed by a Monte Carlo code. In this paper, JMCT, a Monte Carlo code, and COBRA-EN, a subchannel code, are coupled through the method of internal coupling. Picard iteration is used between neutron transport calculation and thermal-hydraulic calculation. The HFP steady-state calculation in a mini-core benchmark in NURISP project is used to validate the coupling code. The result agrees with that of SERPENT2/SUBCHANFLOW and TRIPOLI/SUBCHANFLOW, verifying the accuracy of this code.-
Key words:
- JMCT /
- COBRA-EN /
- internal coupling /
- pin-by-pin
-
表 1 迷你堆HFP工况的物理热工参数
Table 1. HFP parameters of minicore
height of
fuel pins
/cmassembly
width
/cmassembly
arrangementpower
/mWmass flow
rate
/(kg·s-1)inlet
temperature
/Kpressure
/MPaboron
concentration
/ppm365.76 21.42 17×17 100 82.12 560 15.4 200 表 2 收敛比例与粒子数和统计代数的关系
Table 2. Convergence ratio of power in different tracking neutrons and batches
neutrons
per batchnumber of
batchesconvergence
ratio/%1×105 1000 30.94 2×105 1000 42.26 4×105 1000 54.44 6×105 1000 61.63 8×105 1000 70.51 10×105 1000 73.50 6×105 1500 73.23 6×105 2000 83.39 6×105 3000 88.25 -
[1] Kelly D J, Aviles B N, Herman B R. MC21 analysis of the MIT PWR benchmark: hot zero power results[C]//Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2962-2977. [2] Sjenitzer B L, Hoogenboom J E, Escalante J J, et al. Coupling of dynamic Monte Carlo with thermal-hydraulic feedback[J]. Annals of Nuclear Energy, 2015: 27-39. https://www.sciencedirect.com/science/article/pii/S0306454914004903 [3] Daeubler M, Ivanov A, Sjenitzer B L, et al. High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW[J]. Annals of Nuclear Energy, 2015: 352-375. https://www.sciencedirect.com/science/article/pii/S0306454915001747 [4] Liu S, Liang J, Wu Q, et al. BEAVRS full core burnup calculation in hot full power condition by RMC code[J]. Annals of Nuclear Energy, 2017, 101: 434-446. https://www.sciencedirect.com/science/article/pii/S0306454916304959 [5] 刘仕昌, 吴屈, 郭娟娟, 等. BEAVRS基准题热态满功率计算研究[C]//2016年反应堆物理会议, 2016.Liu Shichang, Wu Qu, Guo Juanjuan, et al. Whole core calculations of [5] BEAVRS benchmark in hot full power condition//CORPHY-2016, 2016 [6] 李刚, 邓力, 张宝印, 等. BEAVRS基准模型热零功率状态的JMCT分析[J]. 物理学报, 2016, 65: 052801. doi: 10.7498/aps.65.052801Li Gang, Deng Li, Zhang Baoyin, et al. JMCT Monte Carlo analysis of BEAVRS benchmark: hot zero power results. Acta Physica Sinica, 2016, 65: 052801 doi: 10.7498/aps.65.052801 [7] Kozlowski T, Downar T J. OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark—final report[R]. OECD Nuclear Energy Agency/Nuclear Science Committee. 2007. [8] Kozlowski T, Downar T J. OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark[R]. OECD Nuclear Energy Agency/Nuclear Science Committee. 2003.