留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸气压对激光辐照靶材烧蚀速率的影响

姜学东 陈纪然 王彧 王超

姜学东, 陈纪然, 王彧, 等. 蒸气压对激光辐照靶材烧蚀速率的影响[J]. 强激光与粒子束, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271
引用本文: 姜学东, 陈纪然, 王彧, 等. 蒸气压对激光辐照靶材烧蚀速率的影响[J]. 强激光与粒子束, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271
Jiang Xuedong, Chen Jiran, Wang Yu, et al. Impact of vapor pressure on ablation rate of laser-irradiated ablate target[J]. High Power Laser and Particle Beams, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271
Citation: Jiang Xuedong, Chen Jiran, Wang Yu, et al. Impact of vapor pressure on ablation rate of laser-irradiated ablate target[J]. High Power Laser and Particle Beams, 2018, 30: 021002. doi: 10.11884/HPLPB201830.170271

蒸气压对激光辐照靶材烧蚀速率的影响

doi: 10.11884/HPLPB201830.170271
基金项目: 

国家自然科学基金项目 11472037

国家自然科学基金项目 1272042

中央高校基本科研业务费专项资金 2015JBM085

详细信息
    作者简介:

    姜学东(1970-), 男,硕士,从事开关电源以及等离子体方面研究;xdjiang@bjtu.edu.cn

    通讯作者:

    陈纪然(1993-), 女,硕士研究生,从事开关电源以及等离子体方面研究;15121395@bjtu.edu.cn

  • 中图分类号: O536;O552.3

Impact of vapor pressure on ablation rate of laser-irradiated ablate target

  • 摘要: 研究了强激光辐照碳/碳复合材料靶材引起的烧蚀现象及蒸气压对烧蚀速率的影响。基于傅里叶定律,建立了强激光辐照靶材的热传导模型,模拟了忽略蒸气压影响时烧蚀速率随功率的变化;通过Mott-smith近似方法描述了Knudsen层间断区域,分析了间断两侧表面粒子状态参数;结合质量连续方程和蒸气压与温度关系方程,并由气体状态方程描述蒸气流状态,对蒸气压条件下激光烧蚀碳/碳复合材料靶材的速率随功率变化的关系进行了数值模拟。结果表明,在高能激光对靶材的烧蚀过程中,蒸气压力变化会导致靶材的饱和蒸气温度发生变化,进而影响烧蚀速率且使其随功率呈非线性变化,与忽略蒸气压作用时的线性变化规律相差较大,从理论上解释了忽略蒸气压导致的实验数据与理论结果的差异。
  • 图  1  激光致等离子体示意图

    Figure  1.  Schematic diagram of laser induced plasma

    图  2  热传导模型示意图

    Figure  2.  Model of thermal conduction

    图  3  烧蚀速率随激光功率密度变化规律

    Figure  3.  Ablation velocity varies with along laser power density

    图  4  Knudsen层压力随激光功率密度的变化

    Figure  4.  Pressure of Knudsen layer vs laser power density

    图  5  表面温度随激光功率密度的变化

    Figure  5.  Surface temperature vs laser power density

    图  6  蒸气压对烧蚀速率的影响

    Figure  6.  Effect of vapor pressure on ablation velocity

  • [1] Guizard S, Semerok A, Gaudin J, et al. Femtosecond laser ablation of transparent dielectrics: measurement and modelisation of crater profiles[J]. Appl Surf Sci, 2002, 186: 364-368. doi: 10.1016/S0169-4332(01)00681-X
    [2] 陈国夫. 飞秒激光与透明介质的相互作用[J]. 物理, 2005, 34(10): 725-730. doi: 10.3321/j.issn:0379-4148.2005.10.005

    Chen Guofu. Interaction of femto-second laser pulses with transparent materials. Physics, 2005, 34(10): 725-730 doi: 10.3321/j.issn:0379-4148.2005.10.005
    [3] Sahin R, Simsek E, Akturk S. Nanoscale patterning of graphene through femtosecond laser ablation[J]. Appl Phys Lett, 2014, 104: 053118.
    [4] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究[J]. 物理学报, 2015, 64: 214201. doi: 10.7498/aps.64.214201

    Feng Peipei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64: 214201 doi: 10.7498/aps.64.214201
    [5] 郭亚林, 梁国正, 丘哲明, 等. 激光参数对碳纤维复合材料质量烧蚀率的影响[J]. 复合材料学报, 2006, 23(5): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200605015.htm

    Guo Yalin, Liang Guozheng, Qiu Zheming, et al. Effect of laser parameters on mass ablative rate of carbon fiber reinforced composite. Acta Mater Compos, 2006, 23(5): 84-88 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200605015.htm
    [6] 姚黎为, 王新兵, 刘璐宁, 等. 脉冲CO2激光烧蚀锡靶等离子体的数值模拟[J]. 强激光与粒子束, 2016, 28: 112007. doi: 10.11884/HPLPB201628.160170

    Yao Liwei, Wang Xinbing, Liu Luning, et al. Numerical simulation of pulsed CO2 laser produced tin plasma. High Power Laser and Particle Beams, 2016, 28: 112007 doi: 10.11884/HPLPB201628.160170
    [7] 傅广生, 丁学成, 郭瑞强, 等. 脉冲激光沉积纳米硅晶粒流体模型的推广[J]. 物理学报, 2011, 60: 018102. doi: 10.7498/aps.60.018102

    Fu Guangsheng, Ding Xuecheng, Guo Ruiqiang, et al. The extended inertia fluid model to interpret the size distribution of Si nanoparticles prepared by pulsed laser ablation. Acta Physica Sinica, 2011, 60: 018102 doi: 10.7498/aps.60.018102
    [8] 丁学成, 傅广生, 褚立志, 等. 环境气体种类对激光烧蚀粒子速度劈裂的影响[J]. 物理学报, 2012, 61: 155207. doi: 10.7498/aps.61.155207

    Ding Xuecheng, Fu Guangsheng, Chu Lizhi, et al. Influence of gas type on velocity splitting of ablated particles. Acta Physica Sinica, 2012, 61: 155207 doi: 10.7498/aps.61.155207
    [9] 王文亭, 张楠, 王明伟, 等. 飞秒激光烧蚀金属靶的冲击温度[J]. 物理学报, 2013, 62: 170601. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321011.htm

    Wang Wenting, Zhang Nan, Wang Mingwei, et al. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62: 170601 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321011.htm
    [10] 梁亦寒, 胡广月, 袁鹏, 等. 纳秒激光烧蚀固体靶材产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化[J]. 物理学报, 2015, 64: 125204. doi: 10.7498/aps.64.125204

    Liang Yihan, Hu Guangyue, Yuan Peng, et al. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64: 125204 doi: 10.7498/aps.64.125204
    [11] 陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京: 机械工业出版社, 1996.

    Lu Jian, Ni Xiaowu, He Anzhi. Physics of interaction between laser and materials. Beijing: China Machine Press, 1996
    [12] 黄海明, 孙岳. 脉冲强激光辐照下材料响应的非傅里叶效应[J]. 强激光与粒子束, 2009, 21(6): 808-812. http://www.hplpb.com.cn/article/id/4044

    Huang Haiming, Sun Yue. Non-Fourier response of target irradiated by multi-pulse high power laser. High Power Laser and Particle Beams, 2009, 21(6): 808-812 http://www.hplpb.com.cn/article/id/4044
    [13] 胡汉平. 热传导理论[M]. 1版. 合肥: 中国科学技术大学出版社, 2010.

    Hu Hanping. Thermal conduction theory. 1st ed. Hefei: University of Science and Technology of China Press, 2010
    [14] 赵卫, 乔玲, 韩晓林, 等. C/C-SiC复合材料的表面烧蚀模型及数值模拟[J]. 东南大学学报(自然科学版), 2011, 41(2): 365-369.

    Zhao Wei, Qiao Ling, Han Xiaolin, et al. Surface ablation model and numerical simulation of C/C-SiC composites. J Southeast Univ (Nat Sci Ed), 2011, 41(2): 365-369
    [15] Chan C L, Mazumder J. One-dimensional steady-state mode for damage by vaporization and liquid expulsion due to laser-material interaction[J]. J App Phys, 1987, 62(11): 4579-4586.
    [16] Leonid V Z, Barbara J G. Velocity distributions of molecules ejected in laser ablation[J]. App Phys Lett, 1997, 71(4): 551-553.
    [17] 袁钢, 周光泉. 用于等离子体及LSD波点燃阈值的判据[J]. 高压物理学报, 1988, 2(2): 182-191. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL198802014.htm

    Yuan Gang, Zhou Guangquan. Criteria of thresholds for plasma and LSD wave ignition. Chin J High Pressure Phys, 1988, 2(2): 182-191 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL198802014.htm
    [18] 杨波, 朱金荣, 杨雁南, 等. 由激光靶冲量耦合实验结果判定激光支持爆轰波点燃阈值[J]. 中国激光, 2007, 34(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200701027.htm

    Yang Bo, Zhu Jinrong, Yang Yannan, et al. Determination of the laser supported detonation wave ignition threshold from impulse coupling between laser and target. Chin J Lasers, 2007, 34(1): 139-144 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200701027.htm
    [19] Batanov V A, Bunkin F V, Prokhorov A M, et al. Evaporation of metallic targets caused by intense optical radiation[J]. Sov Phys JETP, 1973, 36(2): 311-322.
    [20] Kelly R. Gas dynamics of the pulsed emission of a perfect gas with applications to laser sputtering and to nozzle expansion[J]. Phys Rev A, 1992, 46(2): 860-874.
  • 加载中
图(6)
计量
  • 文章访问数:  1052
  • HTML全文浏览量:  230
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-09-26
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回