留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy loss spectra of Arq+(q=0-12) ions in grazing incidence on single-crystal copper surface

Luo Xianwen

罗先文. Arq+(q=0-12)离子掠射到单晶铜表面的能损谱[J]. 强激光与粒子束, 2018, 30: 054001. doi: 10.11884/HPLPB201830.170283
引用本文: 罗先文. Arq+(q=0-12)离子掠射到单晶铜表面的能损谱[J]. 强激光与粒子束, 2018, 30: 054001. doi: 10.11884/HPLPB201830.170283
Luo Xianwen. Energy loss spectra of Arq+(q=0-12) ions in grazing incidence on single-crystal copper surface[J]. High Power Laser and Particle Beams, 2018, 30: 054001. doi: 10.11884/HPLPB201830.170283
Citation: Luo Xianwen. Energy loss spectra of Arq+(q=0-12) ions in grazing incidence on single-crystal copper surface[J]. High Power Laser and Particle Beams, 2018, 30: 054001. doi: 10.11884/HPLPB201830.170283

Arq+(q=0-12)离子掠射到单晶铜表面的能损谱

doi: 10.11884/HPLPB201830.170283
基金项目: 

National Natural Science Foundation of China 11405166

详细信息
  • 中图分类号: O562

Energy loss spectra of Arq+(q=0-12) ions in grazing incidence on single-crystal copper surface

Funds: 

National Natural Science Foundation of China 11405166

More Information
    Author Bio:

    Luo Xianwen(1985-), male, PhD, studies ion-surface collision physics; 18681630692@163.com

  • 摘要: 采用蒙特卡罗模拟方法,对低速高电荷态Arq+离子掠射到单晶铜表面时的能损谱与表面结构的依赖关系进行研究。在能损计算中,包含了四种可能的能损机制。对于Ar原子沿着晶列方向掠射时,发现能损谱为一两峰结构,其中在能损比较大的区间新出现一个明显的小峰结构。通过研究Arq+以不同条件掠射到表面的能损,对观察到的沟道效应进行论述。能损谱的计算结果与实验结果吻合得比较好。
  • Figure  1.  Energy loss spectra for 12 keV Ar scattering from single-crystal copper surface under an incidence angle of θin=2.2°

    The azimuthal orientation of the target surface was chosen by azimuthal angles
    Full circles: experimental results of Ref. [18]. Curves: the present calculations fitted by Gaussian functions
    (Dotted curve: elastic energy loss; dashed curves: inelastic energy loss; solid curves: summation of energy loss, i.e., total energy loss)

    Figure  2.  Energy loss spectra for 12keV Ar scattering from copper surface under angles of incidence from θin=0.8° to θin=2.9°

    Figure  3.  Under an angle of incidence θin=0.8°, energy loss spectra of Ar with energies ranging from 10 keV to 160 keV scattering from copper surface

    Figure  4.  Under an angle of incidence θin=0.8°, energy loss spectra for 10 keV Arq+ ions scattering from copper surface(Φ=0°)

    Figure  5.  Sketch of different trajectories for Arq+ scattering along random Ф=10° and low-index directions Ф=0°

  • [1] Briand J P, de Billy L, Charles P, et al. Subfemtosecond study of the hypersatellite cascade in "hollow" atoms[J]. Phys Rev A, 1991, 43: 565-567. doi: 10.1103/PhysRevA.43.565
    [2] Limburg J, Schippers S, Hughes I, et al. Velocity dependence of KLL Auger emission from hollow atoms formed during collisions of hydrogenic N6+ ions on surfaces[J]. Phys Rev A, 1995, 51: 3873-3882. doi: 10.1103/PhysRevA.51.3873
    [3] Briand J P, Etat B, Schnerifer D, et al. Time for the empty L shell of a hollow atom to be filled[J]. Phys Rev A, 1996, 53: 2194-2197. doi: 10.1103/PhysRevA.53.2194
    [4] Winecki S, Cocke C L, Fry D, et al. Neutralization and equilibration of highly charged argon ions at grazing incidence on a graphite surface[J]. Phys Rev A, 1996, 53: 4228-4236. doi: 10.1103/PhysRevA.53.4228
    [5] Briand J P, Giardino G, Borsoni G, et al. Decay of hollow atoms above and below a surface[J]. Phys Rev A, 1996, 54: 4136-4142. doi: 10.1103/PhysRevA.54.4136
    [6] Winecki S, Stöckli M P, Cocke C L. Rapid neutralization and charge equilibration of highly charged ions at grazing incidence on a surface[J]. Phys Rev A, 1997, 56: 538-542. doi: 10.1103/PhysRevA.56.538
    [7] Hughes I G, Burgdorfer J, Folkerts L, et al. Separation of kinetic and potential electron emission arising from slow multicharged ion-surface interactions[J]. Phys Rev Lett, 1993, 71: 291-294. doi: 10.1103/PhysRevLett.71.291
    [8] Lemell C, Stöckl J, Burgdörfer J, et al. Multicharged ion impact on clean Au(111): Suppression of kinetic electron emission in glancing angle scattering[J]. Phys Rev Lett, 1998, 81: 1965-1968. doi: 10.1103/PhysRevLett.81.1965
    [9] Luo Xianwen, Hu Bitao, Zhang Chengjun, et al. Electron and X ray emission of slow highly charged Arq+ ions in grazing incidence on an Al(111) surface[J]. Phys Rev A, 2010, 81: 052902-052913. doi: 10.1103/PhysRevA.81.052902
    [10] Winter H, Aumayr F. Interaction of slow HCI with solid surfaces: What do we know, what should we know?[J]. Physica Scripta, 2001, T92: 15-21.
    [11] HuangW, Lebius H, Schuch R, et al. Energy loss in larger-angle scattering of slow highly charged Ar ions from a Au surface[J]. Phys Rev A, 1998, 58: 2962-2969. doi: 10.1103/PhysRevA.58.2962
    [12] Susuki Y, Fritz M, Kimura K, et al. Energy loss and dissociation of 10-MeV/amu H3+ ions in carbon foils[J]. Phys Rev A, 1995, 51: 3868-3872. doi: 10.1103/PhysRevA.51.3868
    [13] Juaristi J I, Arnau A, Echenique P M, et al. Charge state dependence of the energy loss of slow ions in metals[J]. Phys Rev Lett, 1999, 82: 1048-1051. doi: 10.1103/PhysRevLett.82.1048
    [14] Ziegler J F, Biersack J P, Littmark U. The stopping and ranges of ions in matter[M]. New York: Pergamon Press, 1985.
    [15] WinterH, Mertens A, Pfandzelter R, et al. Energy transfer of keV Ne atoms to the lattice of a LiF(001) surface under channeling[J]. Phys Rev A, 2002, 66: 022902-022908. doi: 10.1103/PhysRevA.66.022902
    [16] Winter H P, Aumayr F, Lemell C, et al. Kinetic electron emission by grazing atom scattering from clean flat metal surfaces[J]. Nucl Instr and Meth B, 2007, 256: 455-463. doi: 10.1016/j.nimb.2006.12.044
    [17] Mertens A, Winter H. Energy transfer from fast atomic projectiles to a crystal lattice under channeling conditions[J]. Phys Rev Lett, 2000, 85: 2825-2828. doi: 10.1103/PhysRevLett.85.2825
    [18] Lederer S, Winter H, Winter H P. Energy loss and electron emission during grazing scattering of fast noble gas atom from an Al(111) surface[J]. Nucl Instr and Meth B, 2007, 258: 87-90. doi: 10.1016/j.nimb.2006.12.095
    [19] Luo Xianwen, Hu Bitao, Zhang Chengjun. Fragmentation and energy loss in grazing scattering of copper clusters Cun from a single-crystal Al(111) surface[J]. Phys Rev A, 2012, 85: 043201. doi: 10.1103/PhysRevA.85.043201
    [20] Kurz H, Töglhofer K, Winter H P, et al. Electron emission from slow hollow atoms at a clean metal surface[J]. Phys Rev Lett, 1992, 69: 1140-1143. doi: 10.1103/PhysRevLett.69.1140
    [21] Limburg J, Das J, Schippers S, et al. Coster-Kronig transitions in hollow atoms created during highly charged ion-surface interactions[J]. Phys Rev Lett, 1994, 73: 786-789. doi: 10.1103/PhysRevLett.73.786
    [22] Stolterfoht N, Köhrbruck R, Grether M, et al. Models for L-shell filling of slow hollow atoms moving below a surface[J]. Nucl Instr and Meth B, 1995, 99: 4-7. doi: 10.1016/0168-583X(95)00207-3
    [23] Stolterfoht N, Arnau A, Grether M, et al. Multiple-cascade model for the filling of hollow Ne atoms moving below an Al surface[J]. Phys Rev A, 1995, 52: 445-449. doi: 10.1103/PhysRevA.52.445
    [24] Limburg J, Schippers S, Hoekstra R, et al. Do hollow atoms exist in front of an insulating LiF(100) surface[J]. Phys Rev Lett, 1995, 75: 217-219. doi: 10.1103/PhysRevLett.75.217
    [25] Briand J P, Thuriez S, Giardino G. Observation of hollow atoms or ions above insulator and metal surface[J]. Phys Rev Lett, 1996, 77: 1452-1455. doi: 10.1103/PhysRevLett.77.1452
    [26] Grether M, Niemann D, Spieler A, et al. Formation and filling of hollow Ne atoms below an Al surface[J]. Phys Rev A, 1997, 56: 3794-3803. doi: 10.1103/PhysRevA.56.3794
    [27] Thomaschewski J, Bleck-Neuhaus J, Grether M, et al. Hollow nitrogen atoms probing the jellium edge in front of Au(111) surface[J]. Phys Rev A, 1998, 57: 3665-3672. doi: 10.1103/PhysRevA.57.3665
    [28] Stolterfoht N, Bremer J H, Muino R D. Formation and cascading decay of hollow Ar atoms at a Si surface[J]. Interaction Journal of Mass Spectrometry, 1999, 192: 425-436. doi: 10.1016/S1387-3806(99)00106-2
    [29] Khemliche H, Schlathölter T, Hoekstra R, et al. Hollow atom dynamics on LiF covered Au(111): Role of the surface electronic structure[J]. Phys Rev Lett, 1998, 81: 1219-1222. doi: 10.1103/PhysRevLett.81.1219
    [30] Stolterfoht N, Niemann D, Hoffmann V, et al. Plasmon production by the decay of hollow Ne atoms near an Al surface[J]. Phys Rev A, 2000, 61: 964-967.
    [31] Schlathölter T, Narmann A, Robin A, et al. Sputtering of hollow atoms from carbon surfaces[J]. Phys Rev A, 2000, 62: 190-195.
    [32] Diamant R, Huotari S, Hamalainen K, et al. Evolution from threshold of a hollow atom's X-ray emission spectrum: the Cu hypersatellites[J]. Phys Rev Lett, 2000, 84: 3278-3281. doi: 10.1103/PhysRevLett.84.3278
    [33] Tong X M, Kato D, Watanabe T, et al. Energy structure of hollow atoms or ions in the bulk of metallic materials[J]. Phys Rev A, 2001, 63: 052505-052512. doi: 10.1103/PhysRevA.63.052505
    [34] WinterH, Aumayr F. Topic review: Hollow atoms[J]. J Phys B, 1999, 32: R39-R65. doi: 10.1088/0953-4075/32/7/005
    [35] Arnau A, Köhrbruck R, Grether M, et al. Molecular-orbital model for slow hollow atoms colliding with atoms in a solid[J]. Phys Rev A, 1995, 51: R3399-R3404. doi: 10.1103/PhysRevA.51.R3399
    [36] BriandJ P, Billy L, Charles P, et al. Production of hollow atoms by the excitation of highly charged ions in interaction with a metallic surface[J]. Phys Rev Lett, 1990, 65: 159-162. doi: 10.1103/PhysRevLett.65.159
    [37] Burgdörfer J, Lerner P, Meyer F W. Above-surface neutralization of highly charged ions: The classical over-the-barrier model[J]. Phys Rev A, 1991, 44: 5674-5685. doi: 10.1103/PhysRevA.44.5674
    [38] Ducree J J, Casali F, Thumm U. Extended classical over-barrier model for collision of highly charged ions with conducting and insulating surfaces[J]. Phys Rev A, 1998, 57: 338-350. doi: 10.1103/PhysRevA.57.338
    [39] Ducree J, Andra H J, Thumm U. Neutralization of hyperthermal multiply charged ions at surfaces: comparison between the extended dynamical over barrier model and experiment[J]. Phys Rev A, 1999, 60: 3029-3043. doi: 10.1103/PhysRevA.60.3029
    [40] Bridwell L B, Hay H J, Pender L F, et al. Excitation of swift heavy ions in foil targets. Ⅳ. Preequilibrium energy losses and mean charge states[J]. Aust J phys, 1988, 41: 681-692. doi: 10.1071/PH880681
    [41] Burgdorfer J, Meyer F. Image acceleration of multiply charged ions by metallic surfaces[J]. Phys Rev A, 1993, 47: R20-R22. doi: 10.1103/PhysRevA.47.R20
    [42] Song Yuan-Hong, Wang You-Nian, Miskovic Z L. Energy loss of heavy ions specularly reflected from surfaces under glancing-angle incidence[J]. Phys Rev A, 2001, 63: 052902. doi: 10.1103/PhysRevA.63.052902
    [43] Wang Y N, Liu W K. Energy loss of ions moving near a solid surface[J]. Phys Rev A, 1996, 54: 636-640. doi: 10.1103/PhysRevA.54.636
    [44] Fetterman A, Sinclair L, Tanushev N. Simulation of the channeling of ions from MeV C60 in crystalline solids[J]. J Phys B, 2007, 40: 2055-2064. doi: 10.1088/0953-4075/40/11/008
    [45] Auth C, Mertens A, Winter H, et al. Threshold in the stopping of slow protons scattered from the surface of a wide-band-gap insulator[J]. Phys Rev Lett, 1998, 81: 4831-4834. doi: 10.1103/PhysRevLett.81.4831
    [46] Borisov A, Mertens A, Winter H. Evidence for the stopping of slow ions by excitation of optical phonons in insulators[J]. Phys Rev Lett, 1999, 83: 5378-5381. doi: 10.1103/PhysRevLett.83.5378
  • 加载中
图(5)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  226
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2017-12-27
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回