留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种大规模燃耗链求解算法对比分析

谭杰 张鹏

谭杰, 张鹏. 两种大规模燃耗链求解算法对比分析[J]. 强激光与粒子束, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293
引用本文: 谭杰, 张鹏. 两种大规模燃耗链求解算法对比分析[J]. 强激光与粒子束, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293
Tan Jie, Zhang Peng. Comparison and analysis of two algorithms for solving large depletion chains[J]. High Power Laser and Particle Beams, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293
Citation: Tan Jie, Zhang Peng. Comparison and analysis of two algorithms for solving large depletion chains[J]. High Power Laser and Particle Beams, 2018, 30: 036002. doi: 10.11884/HPLPB201830.170293

两种大规模燃耗链求解算法对比分析

doi: 10.11884/HPLPB201830.170293
基金项目: 

国家自然科学基金项目 11305036

详细信息
    作者简介:

    谭杰(1992—),女,硕士,从事反应堆燃耗相关研究; jietan@whu.edu.cn

    通讯作者:

    张鹏(1985—),男,博士,从事反应堆物理数值计算方法研究; peng-zhang@whu.edu.cn

  • 中图分类号: TL329.2

Comparison and analysis of two algorithms for solving large depletion chains

  • 摘要: 为严格追踪裂变反应堆中核素成分随燃耗的变化,基于燃耗矩阵法求解燃耗方程,分别采用自主编写的Chebyshev有理近似方法(CRAM)程序和广泛应用的ORIGEN2程序进行大规模燃耗链的点燃耗计算,并对两种算法的相关参数进行对比分析。结果表明:在计算精度方面,CRAM与ORIGEN2程序获得的重要核素的核密度较为一致,个别核素相对误差较大;在计算效率方面,单步燃耗计算ORIGEN2略胜一筹,但CRAM耗时也非常短;在步长稳定性方面,CRAM具有显著优势,而ORIGEN2的统计结果受步长变化的影响较大。
  • 图  1  燃耗矩阵的非零元素分布

    Figure  1.  Non-zero element distribution of a burnup matrix

    图  2  负实轴上CRAM计算结果r16, 16(x)与ex的误差图

    Figure  2.  Plot of error between ex and r16, 16(x) based on CRAM on negative real axis

    图  3  重要核素相对误差

    Figure  3.  Relative differences of important nuclides

    图  4  Am和Cm燃耗链

    Figure  4.  Burnup chains of Am and Cm

    图  5  Am和Cm的核密度变化

    Figure  5.  Density changes of Am and Cm

    图  6  Am和Cm的核密度相对误差变化

    Figure  6.  Relative error changes of density of Am and Cm

    图  7  不同燃耗步长对重要核素统计的影响

    Figure  7.  Influence of different burnup step on important nuclides

  • [1] 龚建华. 深度优先搜索算法及其改进[J]. 现代电子技术, 2007, 30 (22): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ200722034.htm

    Gong Jianhua. Depth priority algorithm and its improvement. Modern Electronics Technique, 2007, 30 (22): 90-92 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ200722034.htm
    [2] 吴明宇, 王事喜, 杨勇, 等. 基于线性核素链的燃耗算法与蒙特卡罗程序耦合计算[J]. 强激光与粒子束, 2013, 25 (1): 248-252. doi: 10.3788/HPLPB20132501.0248

    Wu Mingyu, Wang Shixi, Yang Yong, et al. Monte Carlo program coupling with depletion code based on linear nuclide chain. High Power Laser and Particle Beams, 2013, 25 (1): 248-252 doi: 10.3788/HPLPB20132501.0248
    [3] 李昊, 杨烽, 余纲林, 等. 基于线性子链法的压水堆裂变产物源项一体化计算方法[J]. 强激光与粒子束, 2017, 29: 026002. doi: 10.11884/HPLPB201729.160245

    Li Hao, Yang Feng, Yu Ganglin, et al. Integrated calculation method for pressurized water reactor design basis source terms based on linear chain method. High Power Laser and Particle Beams, 2017, 29: 026002 doi: 10.11884/HPLPB201729.160245
    [4] Cetenar J. General solution of Bateman equations for nuclear transmutations[J]. Annuals of Nuclear Energy, 2006, 33 (7): 640-645.
    [5] Pusa M. Rational approximations to the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering the Journal of the American Nuclear Society, 2011, 169 (2): 155-167.
    [6] Cody W J, Meinardus G, Varga R S. Chebyshev rational approximations to e-x in[0, +∞) and applications to heat-conduction problems[J]. Journal of Approximation Theory, 1969, 2 (1): 50-65.
    [7] Pusa M, Leppänen J. Computing the matrix exponential in burnup calculations[J]. Nuclear Science & Engineering: the Journal of the American Nuclear Society, 2010, 164 (23): 140-150.
    [8] Pusa M. Correction to partial fraction decomposition coefficients for Chebyshev rational approximation on the negative real axis[J/OL]. ArXiv: 1206.2880[math. NA], 2012.
    [9] Gonchar A A, Rakhmanov E A. Equilibrium distributions and rate of rational approximation of analytic functions[J]. Mathematics of the USSR-Sbornik, 1989, 62 (2): 306-352.
    [10] Dehart M D. OECD/NEA burnup credit calculational criticality benchmark phaseI-B results[R]. ORNL-6901, 1996.
    [11] James R B, and Donald J R. Sparse matrix computations[M]. New York: Academic Press, 1976: 3-22.
    [12] Pusa M, Leppänen J. Solving linear systems with sparse Gaussian elimination in the Chebyshev Rational Approximation Method[J]. Nuclear Science and Engineering, 2013, 175 (3): 250-258.
  • 加载中
图(7)
计量
  • 文章访问数:  1231
  • HTML全文浏览量:  320
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-11-27
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回