Estimation and measurement of optical turbulence over land and offshore
-
摘要: 基于Monin-Obukhov相似性理论,采用MARIAH算法,利用成都和茂名两个地区、两个高度层上的温度、湿度、风速等常规气象参数估算折射率结构常数,并对估算值与温度脉动仪测量值进行比较分析。结果显示:利用常规气象参数估算得到的成都与茂名的折射率结构常数在变化趋势及量级上基本符合温度脉动仪测量值。成都和茂名的折射率结构常数估算值与测量值的相关系数分别为0.86与0.92,平均绝对值偏差分别为0.410与0.414。因此,采用MARIAH算法估算陆地和近海面大气光学折射率结构常数是可行的;茂名中午时刻的折射率结构常数峰值比成都大一个量级。Abstract: The refractive index structure constant is estimated and compared with measured values from micro-thermometer by using the meteorological parameters of Chengdu and Maoming, such as temperature, humidity and wind speed on two altitudes. The estimated model adopts MARIAH algorithm, which is based on the Monin-Obukhov similarity theory. The result shows that it is feasible to calculate the structure parameter by MARIAH algorithm. The trend and order of magnitude of the estimated structure constant fit well to that of the measured data. The correlation coefficients between estimated and measured values of two places are 0.86 and 0.92 while the mean absolute error values are 0.410 and 0.414 respectively. Besides, the estimated structure constant of Maoming is one order of magnitude larger than that of Chengdu.
-
表 1 近地面大气参数测量系统传感器技术参数
Table 1. Technical parameters of sensors for near-surface atmospheric parameters measurement
name model accuracy temperature/RH probe HMP155 temperature: < 0.1 ℃;RH: ±1% RH(0~90%RH), ±1.7%RH(90%~100%RH) wind monitor 05106 wind speed: ±0.3 m/s, wind direction: ±3° micro-thermometer MT1 system noise level corresponding to DT of 2×10-3 ℃ -
[1] 吴晓庆, 朱行听, 黄宏华, 等. 基于Monin-Obukhov相似理论估算近地面光学湍流强度[J]. 光学学报, 2012, 32 (7): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207003.htmWu Xiaoqing, Zhu Xingting, Huang Honghua, et al. Optical turbulence of atmospheric surface layer estimated based on the Monin-Obukhov similarity theory. Acta Optica Sinica, 2012, 32 (7): 22-28 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201207003.htm [2] 李杨, 相里斌, 张文喜. 湍流大气中激光传输对傅里叶望远镜成像质量的影响[J]. 强激光与粒子束, 2013, 25 (2): 292-296. doi: 10.3788/HPLPB20132502.0292Li Yang, Xiang Libin, Zhang Wenxi. Effects of laser propagation through atmospheric turbulence on imaging quality in Fourier telescopy. High Power Laser and Particle Beams, 2013, 25 (2): 292-296 doi: 10.3788/HPLPB20132502.0292 [3] Kunkel K E, Walters D L. Modeling the diurnal dependence of the optical refractive index structure parameter[J]. Journal of Geophysical Research: Oceans, 1983, 88 (C15): 10999-11004. doi: 10.1029/JC088iC15p10999 [4] Sadot D, Kopeika N S. Forecasting optical turbulence strength on the basis of macroscale meteorology and aerosols: Models and validation[J]. Optical Engineering, 1992, 31 (2): 200-212. doi: 10.1117/12.56059 [5] 青春, 吴晓庆, 李学彬, 等. 基于天气数值预报模式预报高空光学湍流[J]. 强激光与粒子束, 2015, 27: 061009. doi: 10.11884/HPLPB201527.061009Qing Chun, Wu Xiaoqing, Li Xuebin. Forecast upper air optical turbulence based on weather research and forecasting model. High Power Laser and Particle Beams, 2015, 27: 061009 doi: 10.11884/HPLPB201527.061009 [6] Thiermann V, Lohse H, Englisch G. Modeling optical turbulence in the atmospheric boundary layer over sea[C]//Proc of SPIE. 1997, 2596: 198-203. [7] Hutt D L. Modeling and measurements of atmospheric optical turbulence over land[J]. Optical Engineering, 1999, 38 (8): 1288-1295. doi: 10.1117/1.602188 [8] 戴福山, 李有宽. 利用气象要素估算海洋大气近地层光学湍流[J]. 光学学报, 2007, 27 (2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200702001.htmDai Fushan, Li Youkuan. Estimation of the optical turbulence in the marine atmospheric surface layer based on meteorological data. Acta Optica Sinica, 2007, 27 (2): 191-196 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200702001.htm [9] Rachele H, Tunick A, Hansen F V. MARIAH—A similarity-based method for determining wind, temperature, and humidity profile structure in the atmospheric surface layer[J]. Journal of Applied Meteorology, 1995, 34 (4): 1000-1005. doi: 10.1175/1520-0450(1995)034<1000:MASBMF>2.0.CO;2 [10] Qing Chun, Wu Xiaoqing, Huang Honghua, et al. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model[J]. Optics Express, 2016, 24 (18): 20424. doi: 10.1364/OE.24.020424