留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒光丝阵列对10 GHz电磁波的吸收特性

孙中浩 董超 张亚春 何湘 倪晓武 骆晓森

李天一, 孟维思, 潘攀, 等. 0.8 THz再生反馈振荡器的仿真模拟研究[J]. 强激光与粒子束, 2019, 31: 123101. doi: 10.11884/HPLPB201931.190372
引用本文: 孙中浩, 董超, 张亚春, 等. 飞秒光丝阵列对10 GHz电磁波的吸收特性[J]. 强激光与粒子束, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301
Li Tianyi, Meng Weisi, Pan Pan, et al. Study of 0.8 THz regenerative feedback oscillators[J]. High Power Laser and Particle Beams, 2019, 31: 123101. doi: 10.11884/HPLPB201931.190372
Citation: Sun Zhonghao, Dong Chao, Zhang Yachun, et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301

飞秒光丝阵列对10 GHz电磁波的吸收特性

doi: 10.11884/HPLPB201830.170301
基金项目: 

国家自然科学基金项目 51107033

详细信息
    作者简介:

    孙中浩(1992—),男,硕士研究生,现主要从事激光等离子体与电磁波相互作用的研究; 18251950632@163.com

    通讯作者:

    骆晓森(1959—),男,博士,教授,从事激光物理方面的研究; nlglxs@163.com

  • 中图分类号: TN011;O437

Absorption of 10 GHz electromagnetic waves by femtosecond filaments array

  • 摘要: 为了研究飞秒光丝阵列对10 GHz电磁波的吸收特性,建立了飞秒光丝阵列吸收电磁波的有限元模型,研究了光丝内电子温度、电子数密度、光丝直径和电磁波的极化等参数对吸收系数的影响。研究结果表明:当电磁波偏振方向与光丝轴向垂直时,阵列对电磁波是透明的;增加光丝内电子数密度或提高电子温度,吸收系数先增大后减小;当光丝直径与电磁波趋肤深度相等时,吸收系数达到最大值。对于S极化电磁波,当光丝直径为50 μm时,吸收系数随入射角的增大而变大;当光丝直径为100~200 μm时,在入射角较小时,吸收系数随入射角的增大而变大;在入射角较大时会出现吸收峰值,最高可达0.45,且光丝直径越大,吸收峰值对应的入射角就越小;对于P极化电磁波,吸收系数随入射角增大而降低。
  • Tesla变压器具有紧凑、重复频率高等优点,广泛应用于高功率微波驱动源、电磁脉冲辐射源等领域[1-3]。初级充电电源是Tesla型脉冲功率源的重要部件,主要用于给Tesla变压器初级储能电容器充电,满足系统重复频率运行时对初级能源的需求。LC谐振充电是Tesla变压器常用的初级充电技术[4-6],普遍应用于国内外研制的Tesla型脉冲功率源。LC谐振充电的主要原理是大容量储能电容通过谐振电感向小容量负载电容充电,以获得倍压效果。由于Tesla变压器初级电压一般为几百V到kV,LC谐振充电的储能电容可直接用市电整流滤波供电,谐振充电开关和能量回收开关可采用单级晶闸管,因而电源体积比高电压应用[7-8]时大大缩小,整体功率密度可媲美高频谐振充电电源[9],但成本和复杂度都比后者低得多。LC谐振充电电源给Tesla初级电容重复频率充电时,需要采用多路时基控制器对初级放电、能量回收和谐振充电等三个回路的工作时序进行严格控制[6, 10-11]。如果因强电磁干扰等因素,导致多路触发时序紊乱可能出现严重的后果[12],如充电电压过高、电源“连通”短路等。此外,LC谐振充电电源本身不具备输出短路保护机制,如果发生Tesla变压器初级短路等故障,很可能导致全系统大范围烧毁。针对LC谐振充电的上述缺陷,本文提出了一种时基反馈控制的谐振充电电源,采用特殊设计的时基反馈电路取代多路时基控制器,对谐振充电进行自动触发控制,提高了抗电磁干扰能力,同时具有负载短路保护功能。

    典型的LC谐振充电电源原理如图 1所示。它包括前级直流电源HV、储能电容器C1、谐振电感L1、谐振晶闸管S1、回收电感L2、回收晶闸管S2、多路时基控制器、负载电容器C2等。其中,前级直流电源HV为市电整流滤波,给储能电容器C1供电。C1-L1-S1-C2构成了谐振充电回路,C2-L2-S2构成了能量回收回路。S3为Tesla初级放电晶闸管。多路时基控制器有三个触发端口CH1~CH3

    图  1  典型LC谐振电源原理图
    Figure  1.  Principle of typical LC resonance capacity charging power supply (CCPS)

    CH3首先触发S3,C2迅速向Tesla初级回路放电,放电剩余电压一般为负极性。然后,CH2触发S2,启动能量回收过程,C2L2之间发生LC谐振。半个振荡周期后,回收电流过零,S2自然关断,能量回收过程结束。此时,C2电压由负极性翻转为正极性。最后,CH1触发S1,启动谐振充电过程,C1-L1-C2之间发生LC谐振,即储能电容C1通过谐振电感L1向负载电容C2充电。半个振荡周期后,谐振电流过零,S1自然关断,谐振充电结束,初级电容C2被充到预定电压。

    由上述分析可以看出,基于LC谐振充电的Tesla初级电源需要三路触发信号,而且各触发信号必须按照严格的相对时序依次输出。如果因人为操作错误或者强电磁干扰等因素(Tesla变压器一般工作在恶劣电磁环境下),导致多路时基控制器输出的各触发脉冲时序出现偏差,将可能出现严重的后果。比如,如果CH1与CH2之间的相对延时小于正常值,那么谐振充电过程启动过早,将会导致充电电压过高,危及到开关器件的安全,甚至导致脉冲源内部击穿。又比如,如果在谐振充电还没结束的时候,CH3就已经触发S3放电,那么由于S1和S3都处于导通状态,电源将出现整体性的“连通”短路,往往造成全系统大范围烧毁。此外,LC谐振充电电源本身不具备输出短路保护机制,如果发生了负载短路故障,如Tesla初级放电晶闸管S3烧毁或者初级电容C2击穿,那么也同样会使得电源整体性“连通”短路,造成严重后果。

    提出的时基反馈控制的LC谐振充电电源如图 2所示。与典型LC谐振充电电源不同的是,原回收晶闸管S2改为回收二极管D2,原谐振充电晶闸管S1保留,但S1不再由多路时基控制器触发控制,而是由特殊设计的时基反馈电路进行自动触发控制。该时基反馈电路由隔直电容C3、限流电阻R1、隔离变压器T1、泄放二极管D1等组成,其功能是在C2-L2-D2能量回收过程结束时刻,自动在T1的次级产生幅值和脉宽都合适的触发信号,去触发谐振晶闸管S1

    图  2  时基反馈控制的LC谐振电源的原理图
    Figure  2.  Principle of time-base feedback controlled LC resonance CCPS

    图 3给出了该电源主要节点波形示意图,其中u2为初级电容C2电压,uD2为回收二极管两端电压,itri为T1次级输出的晶闸管触发电流。初级电容C2放电后的初始剩余电压为-Ur,回收二极管D2正向导通,C2-L2-D2能量回收过程自动启动。在能量回收过程中,uD2很小,从而D2将T1的初级短路,即T1初级没有电流流过。半个振荡周期后(td时刻),C2电压u2由-Ur翻转为+Ur,D2反向阻断,能量回收过程结束。此时,C2-L2-D2回路立即切换为C2-T1-R1-C3-L2回路。在C2正极性电压驱动下,C2-T1-R1-C3-L2回路中产生快速上升的电流脉冲。经过变压器耦合作用,T1次级输出快速电流脉冲itri,去触发谐振晶闸管S1,启动谐振充电过程。相应的谐振晶闸管S1触发延时为

    td=πL2C2
    (1)
    图  3  时基反馈的谐振充电电源节点波形示意图
    Figure  3.  Waveform of time-base feedback controlled LC resonance CCPS

    时基反馈电路各元器件的作用是:R1限制触发脉冲幅值,C3限制触发脉冲宽度,T1对触发脉冲进行隔离和调制,D1C3储存的能量提供泄放通道。设T1的变比为n。一般C2C3R1远大于晶闸管门极等效电阻。为了避免触发电流振荡,并考虑到尽可能提供较大的触发电流,C2-T1-R1-C3-L2回路一般可设计为临界阻尼或者接近临界阻尼的过阻尼状态,即R12L2/C3。于是,时基反馈电路产生的itri的峰值、半高宽、初始上升率分别约为

    ip=αUrC3/L2/ne,τ=βeC3L2,ditr/dt=Ur/nL2
    (2)

    式中:αβ是阻尼修正因子;Ur是初级电容初始反向电压。对于临界阻尼,α≈1,β≈1。通过选择合适的隔离电容C3、限流电阻R1和隔离变压器T1变比n,可以获得幅值为安培级、半高宽为10 μs级,且具有足够初始上升率的触发电流,从而驱动谐振晶闸管S1

    时基反馈电路提供了稳定的触发延时,保证了电源各工作回路相对时序的正确性。与多路时基控制器相比,其电路结构简单,且都是高压元件,因而抗电磁干扰较强。进一步分析发现,该时基反馈控制的谐振充电电源具有负载短路故障保护能力:如果发生了负载短路故障,如Tesla初级放电晶闸管S3烧毁或者初级电容C2击穿,那么回收二极管D2两端电压迅速降到零,时基反馈电路因缺乏能量而无法产生触发信号,从而谐振晶闸管S1保持关断状态,谐振充电停止,从而防止了电源发生“连通”故障,避免短路电流烧毁系统其他部分。

    时基反馈控制LC谐振充电电源已应用于CKP1000,CKP5000等多台Tesla型超宽谱脉冲源。以CKP1000超宽谱脉冲源为例,其Tesla变压器初级电容C2=80 μF,初级充电电压U0≈700 V;前级直流源HV采用三相市电全桥整流,储能电容C1=5 mF,储能电压U1=540~580 V;谐振电感L1=350 μH,回收电感L2=85 μH。根据式(2),为获得合适的谐振晶闸管触发电流,选取隔直电容C3=0.22 μF,限流电阻R1=50 Ω,隔离变压器T1变比为1∶1。

    图 4给出了电源工作波形,其中CH1是初级电容C2充电电压波形,CH2是谐振充电电流波形,CH3是时基反馈电路输出电流波形。可以看出,初级电容电压从约-450 V充电到约+700 V,总充电时间约820 μs,其中0~260 μs为能量回收阶段,td=260 μs时刻时基反馈电路给出谐振触发信号,260~820 μs为谐振充电阶段,谐振电流峰值65 A。图 5是时基反馈电路输出电流的放大波形,幅值5.6 A,上升率5 A/μs,半高宽12 μs,满足谐振晶闸管强触发要求。

    图  4  电源工作波形
    Figure  4.  Waveforms of the CCPS
    图  5  时基反馈电路输出电流
    Figure  5.  Output current of the feedback circuit

    图 6给出了CKP1000超宽谱脉冲源1000 Hz工作时,初级电源输出电压电流波形。由于时基反馈电路采用高压元件,因而基本不需特别电磁加固措施,就能可靠工作在超宽谱脉冲辐射条件下。图 7给出了Tesla初级回路发生短路故障时,电源的输出电压(CH1)、谐振充电电流(CH2)和时基反馈电路输出电流(CH3)的波形。可以看到,最后一炮时发生负载短路故障,电源输出电压迅速降为零,时基反馈电路立即停止输出触发脉冲,电源停止了谐振充电,电路中不再有电流,从而实现了负载短路故障保护。

    图  6  电源1000 Hz重频波形
    Figure  6.  Waveform of the CCPS with repetition rate of 1000 Hz
    图  7  电源短路故障保护波形
    Figure  7.  Waveform of output short-circuit protection

    基于LC谐振充电的Tesla初级电源存在时序控制要求高、易受电磁干扰、不具备负载短路保护能力等缺陷。为此,提出了一种时基反馈控制的Tesla初级电源,对谐振充电进行自动触发控制,以实现各回路的正确工作时序。时基反馈电路结构简单,抗电磁干扰能力强,且能够在负载发生短路故障时自动停止充电。该技术已经应用于CKP1000,CKP5000等多台Tesla型超宽谱脉冲源。实验结果表明,在强脉冲辐射环境下,该电源能够以1000 Hz重频稳定运行,且能够在Tesla变压器初级短路故障时进行自动保护。

  • 图  1  飞秒光丝阵列与电磁波相互作用的几何示意图

    Figure  1.  Geometry used to describe the interaction of the incident microwave with the array made of cylindrical plasma filaments

    图  2  数值计算中电磁波的极化情况

    Figure  2.  Polarization of incident electromagnetic wave in numerical calculation

    图  3  电子数密度和电子温度对10 GHz电磁波的反射、透射和吸收系数的影响

    Figure  3.  Influence of the temperature and density of electrons on the transmission, reflection and absorption of electromagnetic wave

    图  4  光丝附近的能流密度

    Figure  4.  Power flow density of filament

    图  5  铜丝附近的能流密度

    Figure  5.  Power flow density of copper wire

    图  6  光丝直径及入射角对电磁波吸收的影响

    Figure  6.  Influence of the diameter of the filament and the incidence angle on the absorption of electromagnetic waves

  • [1] Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69: 036607. doi: 10.1103/PhysRevE.69.036607
    [2] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 1999, 68(4): 753-756. doi: 10.1007/s003400050699
    [3] 王海涛, 范承玉, 沈红, 等. 飞秒光丝中等离子体密度时间演化特征[J]. 强激光与粒子束, 2012, 24(5): 1024-1028. doi: 10.3788/HPLPB20122405.1024

    Wang Haitao, Fan Chengyu, Shen Hong, et al. Temporal evolution of plasma density in femtosecond light filaments. High Power Laser and Particle Beams, 2012, 24(5): 1024-1028 doi: 10.3788/HPLPB20122405.1024
    [4] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2): 213-215. doi: 10.1063/1.1592615
    [5] Méchain G, Méjean G, Ackermann R, et al. Propagation of fs TW laser filaments in adverse atmospheric conditions[J]. Applied Physics B, 2005, 80(7): 785-789. doi: 10.1007/s00340-005-1825-2
    [6] Silaeva E P, Kandidov V P. Propagation of a high-power femtosecond pulse filament through a layer of aerosol[J]. Atmospheric and Oceanic Optics, 2009, 22(1): 26-34. doi: 10.1134/S1024856009010059
    [7] 高慧. 超快激光光丝阵列产生机理研究[D]. 天津: 南开大学, 2013.

    Gao Hui. Ultrafast laser filament array generation. Tianjin: Nankai University, 2013
    [8] Musin R R, Shneider M N, Zheltikov A M, et al. Guiding radar signals by arrays of laser-induced filaments: Finite-difference analysis[J]. Applied Optics, 2007, 46(23): 5593-5597. doi: 10.1364/AO.46.005593
    [9] Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 2008, 92: 091104. doi: 10.1063/1.2889501
    [10] Shneider M N, Zheltikov A M, Miles R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations[J]. Journal of Applied Physics, 2010, 108: 033113. doi: 10.1063/1.3457150
    [11] Marian A, Morsli M E, Vidal F, et al. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air[J]. Physics of Plasmas, 2013, 20: 023301. doi: 10.1063/1.4792160
    [12] Alshershby M, Hao Z, Camino A, et al. Modeling a femtosecond filament array waveguide for guiding pulsed infrared laser radiation[J]. Optics Communications, 2013, 296: 87-94. doi: 10.1016/j.optcom.2012.12.067
    [13] Camino A, Xi T, Hao Z, et al. Femtosecond filament array generated in air[J]. Applied Physics B, 2015, 121(3): 363-368. doi: 10.1007/s00340-015-6238-2
    [14] Bogatskaya A V, Popov A M, Smetanin I V. Amplification and guiding of microwave radiation in a plasma channel created by an ultrashort high-intensity laser pulse in noble gases[J]. Journal of Russian Laser Research, 2014, 35(5): 437-446. doi: 10.1007/s10946-014-9445-0
    [15] Bogatskaya A V, Hou B, Popov A M, et al. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation[J]. Physics of Plasmas, 2016, 23: 374001.
    [16] Kartashov D, Shneider M N. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air[J]. Journal of Applied Physics, 2017, 121: 113303. doi: 10.1063/1.4978745
    [17] Prade B, Houard A, Larour J, et al. Transfer of microwave energy along a filament plasma column in air[J]. Applied Physics B, 2017, 123(1): 40. doi: 10.1007/s00340-016-6616-4
    [18] 吴莹. 激光等离子体的微波干扰和诊断研究[D]. 南京: 南京理工大学, 2009.

    Wu Ying. Studies on microwave interference and microwave measure of laser-induced plasma. Nanjing: Nanjing University of Science and Technology, 2009
    [19] 弗朗西斯·F·陈. 等离子体物理学导论[M]. 北京: 科学出版社, 2016.

    Chen F F. Introduction to plasma physics. Beijing: Science Press, 2016
    [20] Huba J D. NRL (Naval Research Laboratory) plasma formulary, revised[R]. NRL/PU/6790-16-614, 2016.
    [21] 张亚春, 何湘, 沈中华, 等. 进气道内衬筒形等离子体隐身性能三维模拟[J]. 强激光与粒子束, 2015, 27: 052005. doi: 10.11884/HPLPB201527.052005

    Zhang Yachun, He Xiang, Shen Zhonghua, et al. Three-dimensional simulation of plasma stealth for cylindrical inlet. High Power Laser and Particle Beams, 2015, 27: 052005 doi: 10.11884/HPLPB201527.052005
    [22] 庄钊文, 袁乃昌, 刘少斌, 等. 等离子体隐身技术[M]. 北京: 科学出版社, 2005.

    Zhuang Zhaowen, Yuan Naichang, Liu Shaobin, et al. Plasma Stealth Technology. Beijing: Science Press, 2005
  • 加载中
图(6)
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  252
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-29
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-05-15

目录

/

返回文章
返回