-
Abstract: In this article, a feasible switchyard design is proposed for the Shanghai soft X-ray Free Electron Laser (SXFEL) facility. In the proposed scheme, a switchyard is used to transport the electron beam to different undulator lines. Three-dimensional start-to-end simulations have been carried out to research the beam dynamic during transportation. The results show that the emittance of the electron beam increases less than 8%, meanwhile, the peak current, the energy spread and the bunch length are not spoiled as the beam passes through the switchyard. The microbunching instability of the beam and the jitter of the linear accelerator (linac) are analyzed as well.
-
Key words:
- switchyard /
- resistive wall effects /
- microbunching instability /
- jitter
-
Table 1. Main linac parameters of SXFEL
electron beam energy/GeV peak current/A charge/pC bunch length
(FWHM)/fstransverse normalized emittance/(mm·mrad) repeat frequency/Hz 1.5 700 500 ~700 1 50 Table 2. Summary of trajectory jitters
mechanism RMS error Ax/% Ay/% corrector current 5×10-4 5 7 bend current 5×10-5 2 0 quad vibration 150 nm 5 8 quad current 2×10-4 5 4 quad misalignment 200 μm kicker 5×10-4 12 0 septum 1×10-5 4 0 CSR+σz jitter 5% 10 0 total (RMS) 18 11 -
[1] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42: 1906. doi: 10.1063/1.1660466 [2] McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4: 814-821. doi: 10.1038/nphoton.2010.239 [3] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76 [4] Emma P, Akre R, Arthur J, et al. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4: 641-647. doi: 10.1038/nphoton.2010.176 [5] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6: 540-544. doi: 10.1038/nphoton.2012.141 [6] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704. doi: 10.1038/nphoton.2012.233 [7] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7: 913-918. [8] Kang H S, Kim K W, Ko I S. WEYC2: Status of the PAL-FEL construction[C]//Proceedings of IPAC2015.2015. [9] Zhao Z T, Chen S Y, Yu L H, et al. THPC053: Shanghai soft X-ray free electron laser test facility[C]//Proceedings of IPAC2011.2011. [10] Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the Swiss FEL Injector Test Facility[J]. Phys Rev Accel Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702 [11] Altarelli M, Brinkmann R, Chergui M, et al. The European X-ray free-electron laser, Technical design report[R]. DESY-06-097, 2006: 1-26. [12] Galayda J N. TUIOA04: The new LCLC-Ⅱ Project: Status and challenges[C]//Proceedings of LINAC2014.2014. [13] Milas N, Reiche S. MOPD37: Switchyard design: ATHOS[C]//Proceedings of FEL2012.2012. [14] Jiao Yi, Cui Xiaohao, Huang Xiyang, et al. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat[J]. Phys Rev ST Accel Beams, 2014, 17: 060701. doi: 10.1103/PhysRevSTAB.17.060701 [15] Borland M. Elegant: A flexible SDDS-compliant code for accelerator simulation[R]. APS-LS-287, 2000. [16] Bane K L F, Stupakov G. Transition radiation wakefields for a beam passing through a metallic foil[J]. Phys Rev ST Accel Beams, 2004, 7: 064401. doi: 10.1103/PhysRevSTAB.7.064401 [17] Saldin E L, Schneidmiller E A, Yurkov M V, et al. An analytical description of longitudinal phase space distortions in magnetic bunch compressors[J]. Nucl Instrum Methods Phys Res A, 2002, 483: 516-520. doi: 10.1016/S0168-9002(02)00372-8 [18] Huang Z, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Phys Rev ST Accel Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401 [19] Emma P, Wu Juhao. MOPCH049: Trajectory stability modeling and tolerances in the LCLS[C]//Proceedings of EPAC2006.2006. 期刊类型引用(2)
1. 周子凌,吴梦洁,谢锋,周湘艳. 核反应堆材料中氚渗透机制的研究现状. 国际放射医学核医学杂志. 2024(12): 765-773 . 百度学术
2. 陈威虎,杨子辉,夏源,霍前超,王海霞,汪建业. 基于数据驱动的氚粒子扩散三维仿真系统. 计算机系统应用. 2022(01): 118-123 . 百度学术
其他类型引用(0)
-