-
摘要: 束流分配系统是自由电子激光装置中至关重要的一部分,它可以将直线加速器产生的电子束团分配至不同的波荡器中。提出了一种基于上海软X射线自由电子激光装置的束流分配系统设计方案。针对该方案,详细介绍了三维从头至尾的束团跟踪模拟以及在传输过程中的束流动力学分析,模拟结果表明,该束流分配系统设计可以保证束流发射度增长小于8%,同时可以保证峰值电流、能散以及束团长度在经过该分配系统时未受到破坏。此外,针对束团在直线加速器中的微束团不稳定性和抖动也进行了分析。Abstract: In this article, a feasible switchyard design is proposed for the Shanghai soft X-ray Free Electron Laser (SXFEL) facility. In the proposed scheme, a switchyard is used to transport the electron beam to different undulator lines. Three-dimensional start-to-end simulations have been carried out to research the beam dynamic during transportation. The results show that the emittance of the electron beam increases less than 8%, meanwhile, the peak current, the energy spread and the bunch length are not spoiled as the beam passes through the switchyard. The microbunching instability of the beam and the jitter of the linear accelerator (linac) are analyzed as well.
-
Key words:
- switchyard /
- resistive wall effects /
- microbunching instability /
- jitter
-
Table 1. Main linac parameters of SXFEL
electron beam energy/GeV peak current/A charge/pC bunch length
(FWHM)/fstransverse normalized emittance/(mm·mrad) repeat frequency/Hz 1.5 700 500 ~700 1 50 Table 2. Summary of trajectory jitters
mechanism RMS error Ax/% Ay/% corrector current 5×10-4 5 7 bend current 5×10-5 2 0 quad vibration 150 nm 5 8 quad current 2×10-4 5 4 quad misalignment 200 μm kicker 5×10-4 12 0 septum 1×10-5 4 0 CSR+σz jitter 5% 10 0 total (RMS) 18 11 -
[1] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42: 1906. doi: 10.1063/1.1660466 [2] McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4: 814-821. doi: 10.1038/nphoton.2010.239 [3] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76 [4] Emma P, Akre R, Arthur J, et al. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4: 641-647. doi: 10.1038/nphoton.2010.176 [5] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6: 540-544. doi: 10.1038/nphoton.2012.141 [6] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704. doi: 10.1038/nphoton.2012.233 [7] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7: 913-918. [8] Kang H S, Kim K W, Ko I S. WEYC2: Status of the PAL-FEL construction[C]//Proceedings of IPAC2015.2015. [9] Zhao Z T, Chen S Y, Yu L H, et al. THPC053: Shanghai soft X-ray free electron laser test facility[C]//Proceedings of IPAC2011.2011. [10] Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the Swiss FEL Injector Test Facility[J]. Phys Rev Accel Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702 [11] Altarelli M, Brinkmann R, Chergui M, et al. The European X-ray free-electron laser, Technical design report[R]. DESY-06-097, 2006: 1-26. [12] Galayda J N. TUIOA04: The new LCLC-Ⅱ Project: Status and challenges[C]//Proceedings of LINAC2014.2014. [13] Milas N, Reiche S. MOPD37: Switchyard design: ATHOS[C]//Proceedings of FEL2012.2012. [14] Jiao Yi, Cui Xiaohao, Huang Xiyang, et al. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat[J]. Phys Rev ST Accel Beams, 2014, 17: 060701. doi: 10.1103/PhysRevSTAB.17.060701 [15] Borland M. Elegant: A flexible SDDS-compliant code for accelerator simulation[R]. APS-LS-287, 2000. [16] Bane K L F, Stupakov G. Transition radiation wakefields for a beam passing through a metallic foil[J]. Phys Rev ST Accel Beams, 2004, 7: 064401. doi: 10.1103/PhysRevSTAB.7.064401 [17] Saldin E L, Schneidmiller E A, Yurkov M V, et al. An analytical description of longitudinal phase space distortions in magnetic bunch compressors[J]. Nucl Instrum Methods Phys Res A, 2002, 483: 516-520. doi: 10.1016/S0168-9002(02)00372-8 [18] Huang Z, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Phys Rev ST Accel Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401 [19] Emma P, Wu Juhao. MOPCH049: Trajectory stability modeling and tolerances in the LCLS[C]//Proceedings of EPAC2006.2006.