留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Switchyard design for Shanghai soft X-ray free electron laser facility

Gu Duan Wang Zhen Huang Dazhang Gu Qiang Zhang Meng

谷端, 王震, 黄大章, 等. 上海软X射线自由电子激光装置束流分配系统设计[J]. 强激光与粒子束, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303
引用本文: 谷端, 王震, 黄大章, 等. 上海软X射线自由电子激光装置束流分配系统设计[J]. 强激光与粒子束, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303
Gu Duan, Wang Zhen, Huang Dazhang, et al. Switchyard design for Shanghai soft X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303
Citation: Gu Duan, Wang Zhen, Huang Dazhang, et al. Switchyard design for Shanghai soft X-ray free electron laser facility[J]. High Power Laser and Particle Beams, 2018, 30: 045101. doi: 10.11884/HPLPB201830.170303

上海软X射线自由电子激光装置束流分配系统设计

doi: 10.11884/HPLPB201830.170303
基金项目: 

Natural Science Foundation of China 11675248

详细信息
  • 中图分类号: TL506

Switchyard design for Shanghai soft X-ray free electron laser facility

Funds: 

Natural Science Foundation of China 11675248

More Information
  • 摘要: 束流分配系统是自由电子激光装置中至关重要的一部分,它可以将直线加速器产生的电子束团分配至不同的波荡器中。提出了一种基于上海软X射线自由电子激光装置的束流分配系统设计方案。针对该方案,详细介绍了三维从头至尾的束团跟踪模拟以及在传输过程中的束流动力学分析,模拟结果表明,该束流分配系统设计可以保证束流发射度增长小于8%,同时可以保证峰值电流、能散以及束团长度在经过该分配系统时未受到破坏。此外,针对束团在直线加速器中的微束团不稳定性和抖动也进行了分析。
  • Figure  1.  Schematic layout of the SXFEL facility

    Figure  2.  Schematic layout of the switchyard

    Figure  3.  Twiss functions in the switchyard

    Figure  4.  Longitudinal wakefield behind a point charge in a round, metallic pipe with various radii (s is inner length of bunch)

    Figure  5.  Variation of central energy along beam for various pipe radii at exit of FODO cells

    Figure  6.  Emittance evolution through the switchyard (a) and energy and current distributions at exit of switchyard (b)

    Figure  7.  Trajectory jitters at switchyard exit (50 random errors)

    Figure  8.  Orbit deviation corrections of electron beam in switchyard

    Table  1.   Main linac parameters of SXFEL

    electron beam energy/GeV peak current/A charge/pC bunch length
    (FWHM)/fs
    transverse normalized emittance/(mm·mrad) repeat frequency/Hz
    1.5 700 500 ~700 1 50
    下载: 导出CSV

    Table  2.   Summary of trajectory jitters

    mechanism RMS error Ax/% Ay/%
    corrector current 5×10-4 5 7
    bend current 5×10-5 2 0
    quad vibration 150 nm 5 8
    quad current 2×10-4 5 4
    quad misalignment 200 μm
    kicker 5×10-4 12 0
    septum 1×10-5 4 0
    CSR+σz jitter 5% 10 0
    total (RMS) 18 11
    下载: 导出CSV
  • [1] Madey J M J. Stimulated emission of bremsstrahlung in a periodic magnetic field[J]. Journal of Applied Physics, 1971, 42: 1906. doi: 10.1063/1.1660466
    [2] McNeil B W J, Thompson N R. X-ray free-electron lasers[J]. Nature Photonics, 2010, 4: 814-821. doi: 10.1038/nphoton.2010.239
    [3] Ackermann W, Asova G, Ayvazyan V, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window[J]. Nature Photonics, 2007, 1(6): 336-342. doi: 10.1038/nphoton.2007.76
    [4] Emma P, Akre R, Arthur J, et al. First lasing and operation of an angstrom-wavelength free-electron laser[J]. Nature Photonics, 2010, 4: 641-647. doi: 10.1038/nphoton.2010.176
    [5] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray free-electron laser emitting in the sub-ångström region[J]. Nature Photonics, 2012, 6: 540-544. doi: 10.1038/nphoton.2012.141
    [6] Allaria E, Appio R, Badano L, et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 2012, 6: 699-704. doi: 10.1038/nphoton.2012.233
    [7] Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser[J]. Nature Photonics, 2013, 7: 913-918.
    [8] Kang H S, Kim K W, Ko I S. WEYC2: Status of the PAL-FEL construction[C]//Proceedings of IPAC2015.2015.
    [9] Zhao Z T, Chen S Y, Yu L H, et al. THPC053: Shanghai soft X-ray free electron laser test facility[C]//Proceedings of IPAC2011.2011.
    [10] Schietinger T, Pedrozzi M, Aiba M, et al. Commissioning experience and beam physics measurements at the Swiss FEL Injector Test Facility[J]. Phys Rev Accel Beams, 2016, 19: 100702. doi: 10.1103/PhysRevAccelBeams.19.100702
    [11] Altarelli M, Brinkmann R, Chergui M, et al. The European X-ray free-electron laser, Technical design report[R]. DESY-06-097, 2006: 1-26.
    [12] Galayda J N. TUIOA04: The new LCLC-Ⅱ Project: Status and challenges[C]//Proceedings of LINAC2014.2014.
    [13] Milas N, Reiche S. MOPD37: Switchyard design: ATHOS[C]//Proceedings of FEL2012.2012.
    [14] Jiao Yi, Cui Xiaohao, Huang Xiyang, et al. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat[J]. Phys Rev ST Accel Beams, 2014, 17: 060701. doi: 10.1103/PhysRevSTAB.17.060701
    [15] Borland M. Elegant: A flexible SDDS-compliant code for accelerator simulation[R]. APS-LS-287, 2000.
    [16] Bane K L F, Stupakov G. Transition radiation wakefields for a beam passing through a metallic foil[J]. Phys Rev ST Accel Beams, 2004, 7: 064401. doi: 10.1103/PhysRevSTAB.7.064401
    [17] Saldin E L, Schneidmiller E A, Yurkov M V, et al. An analytical description of longitudinal phase space distortions in magnetic bunch compressors[J]. Nucl Instrum Methods Phys Res A, 2002, 483: 516-520. doi: 10.1016/S0168-9002(02)00372-8
    [18] Huang Z, Borland M, Emma P, et al. Suppression of microbunching instability in the linac coherent light source[J]. Phys Rev ST Accel Beams, 2004, 7: 074401. doi: 10.1103/PhysRevSTAB.7.074401
    [19] Emma P, Wu Juhao. MOPCH049: Trajectory stability modeling and tolerances in the LCLS[C]//Proceedings of EPAC2006.2006.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  216
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-03
  • 修回日期:  2017-12-06
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回