Pulse shaping method for compulsator
-
摘要: 基于一台两相四极空心补偿脉冲发电机,研究了多相脉冲电机放电波形调节的最优化问题。对补偿脉冲发电机的三种典型负载:电磁轨道炮、脉冲激光器和电热化学炮的基本特性进行了阐述,针对这三种负载分别提出了相应的优化指标,分析了量化脉冲波形对负载的适用程度,并将波形优化问题转化为函数优化问题。在建立了脉冲电机放电数学模型的基础上,使用差分进化算法对优化问题进行求解,找到最优点火角组合。对电磁轨道炮,优化指标为弹丸加速度比。将加速度比的概念进行拓展,可得到适用于脉冲激光器的尖顶脉冲。对电热化学炮,提出了“形状方差”的概念,消除了电流幅值的影响,能够较好地衡量脉冲形状的适用性。仿真结果表明,提出的脉冲波形优化指标是有效的,在智能优化算法的帮助下,能够通过控制量的组合得到不同类型负载的最优波形。Abstract: Based on a two-phase four-poles air-core compulsator, the discharge pulse shape optimization problem is studied. The characteristics of three typical kinds of loads for compulsator: electromagnetic rail guns, flashlamps and electro-thermal chemical guns are analyzed, whose requirements for pulse shape are significantly different. Optimization indexes are proposed for different loads to quantify the fitness of discharge pulse, transferring the pulse shaping problem into function optimization problem. For electromagnetic rail guns, the optimization index is the "acceleration ratio" of the projectile, which is the ratio of maximum acceleration and average acceleration during launch process. The larger acceleration ratio is, the flatter the waveform is. By expanding the concept of acceleration ratio, this index can be applied on flashlamps. For electro-thermal chemical guns, the concept of "shape variance" is proposed to measure the pulse shape. Simulation results show that the proposed optimization indexes are effective. With the help of intelligent optimization algorithm, we can get the optimized discharge pulse for different loads. Simultaneously, it is verified that the two-phase compulsator has strong flexibility in waveform adjustment.
-
Key words:
- compulsator /
- pulse shaping technique /
- optimization algorithm /
- load characteristic /
- firing angle
-
表 1 仿真参数设置
Table 1. Simulation parameters
initial rotor speed/(r·min-1) initial field current/kA rotor’s moment of inertia/(kg·m2) mass of projectile/g inductance gradient/(μH·m-1) resistance gradient/(mΩ·m-1) discharge period 18 000 8 0.177 5 5 1 0.5 1 -
[1] McNab I R. Pulsed power options for large EM launchers[J]. IEEE Trans Plasma Sci, 2015, 43(5): 1352-1357. doi: 10.1109/TPS.2014.2372173 [2] Dai Ling, Dong Hanbin, Lin Fuchang, et al. Miniaturization of thyristor applied in pulse power supply[J]. Trans of China Electrotechnical Society, 2012, 27(8): 120-125. [3] Tang Lei, Yu Kexun. Investigation of the transient inductance for a pulsed alternator with fully passive compensation[J]. IEEE Trans Plasma Sci, 2016, 44(1): 71-78. doi: 10.1109/TPS.2015.2507399 [4] Herbst J, Beno J, Ouroua A, et al. High slew rate power supplies for support of large pulsed loads[C]//IEEE Electric Ship Technologies Symposium (ESTS). 2015: 446-452. [5] Driga M D, Pratap S B, Weldon W F. Design of compensated pulsed alternators with current waveform flexibility[C]//6th IEEE Pulsed Power Conference. 1987. [6] Gao Liang, Li Zhenxiao, Li Baoming. The modeling and calculation on an air-core passive compulsator[J]. IEEE Trans Plasma Sci, 2015, 43(3): 864-868. doi: 10.1109/TPS.2015.2394352 [7] Cui S M, Zhao W D, Wang S F, et al. Investigation of multiphase compulsator systems using a Co-simulation method of FEM-circuit analysis[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1247-1253. doi: 10.1109/TPS.2013.2248389 [8] 王昊泽. 基于磁悬浮飞轮储能的被动补偿脉冲发电系统研究[D]. 长沙: 国防科学技术大学, 2010.Wang Haoze. Study on the compulsator system based on magnetic suspension flywheel. Changsha: National University of Defense Technology, 2010 [9] 朱博峰, 鲁军勇, 王杰. 轻小型脉冲电源驱动的电磁发射系统建模[J]. 海军工程大学学报, 2016, 28(3): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htmZhu Bofeng, Lu Junyong, Wang Jie. Modeling of electromagnetic launch system driven by CPA. Journal of Naval University of Engineering, 2016, 28(3): 100-104 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGX2016S1021.htm [10] Pratap S B, Driga M D, Weldon W F, et al. Future trends for compulsators driving railguns[J]. IEEE Trans Magn, 1986, 22(6): 1681-1683. doi: 10.1109/TMAG.1986.1064680 [11] Pratap S B, Hsieh K T, Driga M D, et al. Advanced compulsators for railguns[J]. IEEE Trans Magnetics, 1989, 25(1): 454-459. doi: 10.1109/20.22581 [12] 陈佳, 李海兵, 蒋宝财, 等. 脉冲氙灯放电时等离子体电阻的研究[J]. 激光与红外, 2009, 39(2): 190-193. doi: 10.3969/j.issn.1001-5078.2009.02.019Chen Jia, Li Haibing, Jiang Baocai, et al. Research on the impedance of plasma in xenon flash lamp during discharging. Laser and Infrared, 2009, 39(2): 190-193 doi: 10.3969/j.issn.1001-5078.2009.02.019 [13] Winstanley P A. The role of pulse power in flashlamp pumped lasers[C]//IEE Colloq on Pulsed Power. 1997. [14] Loeb A, Kaplan Z. A theoretical model for the physical processes in the confined high pressure discharges of electrothermal launchers[J]. IEEE Trans Magn, 25(1): 342-346. doi: 10.1109/20.22561 [15] Driga M D, Ingram M W, Weldon W F. Electrothermal accelerators: the power conditioning point of view[J]. IEEE Trans Magnetics, 25(1): 147-152. doi: 10.1109/20.22524