Design of time sequence discharging control system for pulse power supply modules
-
摘要: 设计了一套用于控制30个脉冲功率电源模块按时序进行放电的控制系统。该控制系统使用高速数字信号处理器作为主要控制芯片,采用高速光电转换器件及光纤作为触发信号传输系统,利用脉冲隔离变压器作为电源开关触发系统的主要隔离元件,在硬件方面实现了时序放电触发信号的高精度传输和高压隔离。同时,该控制系统使用优化的软件算法对数字信号处理器进行软件编程,实现了放电时序计算的优化控制,而且利用简易的计算机语言对上位机软件进行编写,实现对放电时序进行精确的设置,从而保证了时序放电的精确度。将该控制系统用于实际的30路脉冲功率电源放电装置的实验中,得到了良好的放电电流实验波形。根据时序触发波形及放电波形进行分析,该时序放电控制系统每路电源放电时间最小间隔可达到20 μs,电流波形反映的触发时刻与放电时序设置时刻的延时误差分布在10~15 μs,整个控制系统的性能符合设计的要求。Abstract: With the development of pulse power technology, the pulse power supply modules (PPSMs) are widely used in areas of scientific research, medical treatment, industry, military, and geological exploration. In these areas, more and more energy is needed and the number of PPSMs is increasing rapidly, and accurate pulse discharging waveforms are required. How to control the numerous PPSMs to discharge in precise time sequence effectively to obtain the waveforms becomes one of the key problems in the pulse power technology.According to the requirements of a pulse discharging velocity source, a time sequence discharging control system is designed, which can control 30 PPSMs to discharge in a precise time sequence. In this control system, the digital signal processor (DSP) is used as the main control chip and the high speed photoelectric converters and optical fibers are used as the trigger signals transmission system. The time sequence can be set by using the upper computer software and the accuracy of the trigger pulses can reach microsecond level. This control system has been used in the actual experiments of the acceleration source and the results prove that the control system is effective.
-
表 1 实验结果
Table 1. Experiment results
serial number set value of time sequence/μs measurement value of time sequence/μs deviation /μs A 360 370 10 B 700 712 12 C 900 910 10 D 1200 1212 12 E 1560 1572 12 F 1900 1914 14 -
[1] 李军, 严萍, 袁伟群. 电磁轨道发射技术的发展与现状[J]. 高电压技术, 2014, 40 (4): 1052-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htmLi Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and its development. High Voltage Engineering, 2014, 40 (4): 1052-1064 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201404015.htm [2] 周媛. 脉冲成形网络及其在电磁轨道发射系统中的应用[D]. 北京: 中国科学院电工研究所, 2012.Zhou Yuan. Circuit simulation study of electromagetic rail launcher based on pulse forming network. Beijing: Institute of Electrical Engineering, Chinese Academy of Sciences, 2012 [3] 廖敏夫, 邹积岩, 段雄英, 等. 场击穿型真空触发开关控制器设计及时延特性[J]. 高电压技术, 2006, 32 (5): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200605012.htmLiao Minfu, Zou Jiyan, Duan Xiongying, et al. Delay characteristics and design of controller of a field-breakdown triggered vacuum switch. High Voltage Engineering, 2006, 32 (5): 45-48 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200605012.htm [4] 石晓晶, 董建年. 用于电磁发射试验的时序控制电路设计[J]. 仪器仪表学报, 2004, 25 (4): 969-970. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S1408.htmShi Xiaojing, Dong Jiannian. Design of firing control for ET experiment. Chinese Journal of Scientific Instrument, 2004, 25 (4): 969-970 https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S1408.htm [5] 薛飞, 张建革. 基于时序控制脉冲形成网络的电磁轨道炮仿真研究[J]. 电气技术, 2010, 10 (2): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS2010S1009.htmXue Fei, Zhang Jiange. Simulation study of the elcctromagnetic rail gun based on the timing control pulse formation network. Electrical Engineering, 2010, 10 (2): 16-23 https://www.cnki.com.cn/Article/CJFDTOTAL-DQJS2010S1009.htm [6] 黄海, 高俊山, 李文龙. 电磁发射器DSP控制系统的设计[J]. 自动化技术与应用, 2007, 26 (3): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200703028.htmHuang Hai, Gao Junshan, Li Wenlong. DSP-based control of the electromagnetic launcher. Techniques of Automation and Applications, 2007, 26 (3): 92-95 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200703028.htm [7] 谭赛, 鲁军勇. 电磁轨道炮的电气参数特性研究及优化设计[J]. 船电技术, 2012, 32 (2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI201202006.htmTan Sai, Lu Junyong. The electric parameters characteristics and optimum design of electromagnetic railgun. Marine Electric & Electronic Engineering, 2012, 32 (2): 8-12 https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI201202006.htm [8] Liu Kun, Gao Yinghui, Wang Jiong, et al. Control system based on optical fiber communications for the high-frequency high-voltage charging power supplies' parallel operation[C]//17th International Symposium on Electromagnetic Launch Technology. 2014. [9] 刘坤, 高迎慧, 严萍. 高频高压电源的电磁兼容设计方法综述[J]. 电源技术, 2011, 35 (10): 1325-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201110046.htmLiu Kun, Gao Ying-hui, Yan Ping. Electromagnetic compatibility design methods of high-frequency and high-voltage power supply. Chinese Journal of Power Sources, 2011, 35 (10): 1325-1328 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201110046.htm [10] Liu Kun, Sun Yaohong, Gao Yinghui, et al. High-voltage high-frequency charging power supply based on voltage feedback and phase-shift control[C]//16th International Symposium on Electromagnetic Launch Technology. 2012: 1-5. [11] Liu Kun, Wang Lei, Fan Ailong, et al. Design of pulse generator and drive circuit for high-voltage repetition-frequency thyristor series switch[C]//IEEE 11th Conference on Industrial Electronics and Applications. 2016: 2247-2250. [12] 刘坤, 付荣耀, 高迎慧, 等. 高压重频充电电源控制系统的设计[J]. 强激光与粒子束, 2016, 28: 045001. doi: 10.11884/HPLPB201628.125001Liu Kun, Fu Rongyao, Gao Yinghui, et al. Design of the control system of high voltage repetition frequency charging power supply. High Power Laser and Particle Beams, 2016, 28: 045001 doi: 10.11884/HPLPB201628.125001 [13] Liu Kun, Fu Rongyao, Gao Yinghui, et al. High-voltage repetition-frequency charging power supply for pulsed laser[J]. IEEE Trans Plasma Science, 2015, 43 (5): 1387-1392. [14] Agilent Technologies Data Manual. Versatile Link—The versatile fiber optic connection technical data, HFBR-0501 Series[DS/OL]. Agilent Technologies Inc, 2001.