Drive laser system for a photocathode at IHEP
-
摘要: 能量回收型直线加速器(ERL)可能提供低发射度、高平均流强的连续电子束团,其电子枪的光阴极需要高重复频率、高平均功率的驱动激光系统。采用先进的光纤激光技术,特别是在激光系统中采用了掺镱光子晶体增益光纤,能实现高重复频率高平均功率激光输出。利用啁啾脉冲放大(CPA)技术,通过优化设计,将重复频率100 MHz和1.3 GHz的两套激光振荡源集成到同一个激光系统,整个激光系统的结构简化,使用方便。两种重复频率激光倍频效率分别达到50%和30%,绿光能达到5 W以上,满足光阴极实验平台的使用要求。Abstract: The Energy Recovery Linac (ERL) can produce continuous electron bunches with low emittance at high average current. The photocathode electron gun needs high repetition rate, high average power drive laser system. Adopting advanced fiber laser technologies, especially using Yb-doped photonic crystal fiber in the laser system, a high repetition frequency, high average power laser system was set up. By using chirped pulse amplification (CPA) and optimizing the design, a 100 MHz oscillator and a 1.3 GHz oscillator were integrated into one laser system. The structure of the whole laser system can be simplified and easy to operate. The second harmonic generation (SHG) efficiencies of the laser system at two different repetition rates have already reached 50% and 30%, respectively. In addition, more than 5 W green light has been achieved, which meets the needs of test platform of photocathode at IHEP.
-
Key words:
- photocathode /
- drive laser for a photocathode /
- fiber laser /
- photonic crystal fiber /
- fiber amplifier
-
表 1 两种运行状态对应的激光要求
Table 1. Laser requirements for two operation modes
parameters electron bunch charge/pC pulse energy at cathode/nJ pulse repetition rate/MHz power at cathode/W pulse length (flattop)/ps 1st mode 77 18 100 1.8 20~30 2nd mode 7.7 1.8 1.3 2.3 20~30 -
[1] Ito I, Nakamura N, Dai Y, et al. Development of an Yb-doped fiber laser system for an ERL photocathode gun[J]. Proceedings of Ipac, 2010: 2141-2143. [2] Honda Y. Development of a photo-injector laser system for KEK ERL test accelerator[J]. Proceedings of Ipac, 2012: 1530-1532. [3] Sakanaka S, Akemoto M, Aoto T, et al. Status of the energy recovery linac project in Japan[J]. Proceedings of Ipac, 2009, 64(s): 1278-1280. [4] Zhao Z, Bartnik A, Wise F W, et al. High-power fiber lasers for photocathode electron injectors[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17(5): 986-1000. [5] Ouzounov D G, Bazarov I V, Dunham B, et al. The laser system for the ERL electron source at Cornell University[C]//Particle Accelerator Conference. 2008: 530-532. [6] Onda T, Shinnosuke M, Shoji I. A new walk-off compensating BBO device with thinner-plate-stacked structure fabricated by room-temperature bonding[C]//Nonlinear Optics. 2013. [7] 徐金强, 孙大睿. 用于光阴极的光纤激光研制实验[J]. 强激光与粒子束, 2015, 27: 051002. doi: 10.11884/HPLPB201527.051002Xu Jinqiang, Sun Darui. Development of fiber laser system for a photocathode gun. High Power Laser and Particle Beams, 2015, 27: 051002 doi: 10.11884/HPLPB201527.051002 [8] 黄志华, 林宏奂, 王建军, 等. 基于光子晶体光纤的全光纤脉冲放大器[J]. 强激光与粒子束, 2014, 26: 021001. doi: 10.3788/HPLPB201426.021001Huang Zhihua, Lin Honghuan, Wang Jianjun, et al. All-fiber pulsed amplifier based on photonic cyrstal fiber. High Power Laser and Particle Beams, 2014, 26: 021001 doi: 10.3788/HPLPB201426.021001 [9] 黄志华, 许党朋, 林宏奂, 等. 高功率全光纤啁啾脉冲放大激光系统[J]. 强激光与粒子束, 2014, 26: 091015. doi: 10.11884/HPLPB201426.091015Huang Zhihua, Xu Danpeng, Lin Honguan, et al. High power all-fiber chirped pulse amplification laser system. High Power Laser and Particle Beams, 2014, 26: 091015 doi: 10.11884/HPLPB201426.091015 [10] Zhang S, Benson S, Evtushenko P, et al. A simple gating technique for high-average-current photo-injectors[J]. Nuclear Inst & Methods in Physics Research A, 2011, 629(1): 11-15.